
Introduction to Programming Concepts with
MATLAB

2022-10-02

2

Contents

Front Cover 22

Information 25

License 27

Dedication 29

Thoughts 31

Author Bios 33

Preface 37

Contact Information 39

Acknowledgements 41

What is New With This Edition 43

A Note to Students 45

A Note to Instructors 47

Module 1: INITIAL SETUP AND BASIC OPERATION
Lesson 1.1 – MATLAB Introduction

Learning Objectives .

What is MATLAB? .

3

4 CONTENTS

What is MATLAB used for in engineering and science?

How can I get MATLAB onto my computer?

Are there any free alternatives to MATLAB?

Where can I find more information and help with MATLAB online? .

Multiple Choice Quiz .

Problem Set .

Module 1: INITIAL SETUP AND BASIC OPERATION

Lesson 1.2 – Hello World .

Learning Objectives .

Where can I find and open the MATLAB program?

Step 1: Create a New m-file .

Step 2: Write the ‘Hello World’ Code

Step 3: Run the Program .

Step 4: Make Your Program a Little Fancier

Multiple Choice Quiz .

Problem Set .

Module 1: INITIAL SETUP AND BASIC OPERATION

Lesson 1.3 – MATLAB Environment

Learning Objectives .

MATLAB Environment Windows and Parts

Navigation Ribbon .

Working Folder Location .

Current Folder .

Command Window .

Editor Window .

Workspace .

Status Bar .

Multiple Choice Quiz .

Problem Set .

CONTENTS 5

Module 1: INITIAL SETUP AND BASIC OPERATION
Lesson 1.4 – Changing MATLAB Preferences
Learning Objectives .
How can I change the window layout in MATLAB?
Changing Basic User Preferences .
Multiple Choice Quiz .
Problem Set .

Module 1: INITIAL SETUP AND BASIC OPERATION
Lesson 1.5 – The m-file .
Learning Objectives .
What is an m-file? .
How do I save my m-file? .
How do I input variables and expressions into the m-file?
How do I run the m-file? .
What are the clc and clear commands?
How can I place comments in my m-file?
Can I separate my code into parts within the m-file?
What does the color highlighting in the m-file mean?
Lesson Summary of New Syntax and Programming Tools
Multiple Choice Quiz .
Problem Set .

Module 1: INITIAL SETUP AND BASIC OPERATION
Lesson 1.6 – The Command Window
Learning Objectives .
What is the Command Window and how can I use it?
How can I suppress outputs in the Command Window?
Can I view help from the Command Window?
Can the Command Window do it all?
Lesson Summary of New Syntax and Programming Tools
Multiple Choice Quiz .
Problem Set .

6 CONTENTS

Module 1: INITIAL SETUP AND BASIC OPERATION

Lesson 1.7 – Publishing an m-file .

Learning Objectives .

What does publishing do? .

How can I publish in MATLAB? .

How can I get a PDF file of my published code?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.1 – Variables and Naming Rules

Learning Objectives .

What is a mathematical variable? .

What is a programming variable? .

How can I give my results a variable name of their own?

What are some possible problems with naming an expression?

Are there benefits to good practices for variable naming?

Are there some guidelines for variable naming that I can follow? . . .

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.2 – Characters and Strings

Learning Objectives .

What is a character? .

What is a string? .

What makes characters/strings special?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

CONTENTS 7

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.3 – Working with Strings .

Learning Objectives .

How do I join two strings together? .

How do I search and count strings? .

How do I make a whole string lower or upper case?

Can I split a string into its component pieces?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.4 – Inputs and Outputs .

Learning Objectives .

How can I get input from the user? .

How do I display notes in the Command Window?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.5 – Data Types .

Learning Objectives .

What is a data type? .

What are the MATLAB data types?

Why are data types important? .

How do I check the data type of a variable?

Can I convert between data types? .

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

8 CONTENTS

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.6 – Vectors and Matrices .

Learning Objectives .

Why is the program called MATLAB?

What is a matrix? .

Do I need to know any special types of matrices?

What is a vector? .

How do I define a vector or a matrix in MATLAB?

What are some basic functions and commands for matrix manipulation?

How can I reference strings as vectors?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 2: BASIC PROGRAMMING FUNDAMENTALS

Lesson 2.7 – How to Debug Code .

Learning Objectives .

What is an error? .

What is a warning? .

How can I solve the problem with my code?

Can I pause my program part of the way through?

What if I cannot find the exact place of the error?

Multiple Choice Quiz .

Problem Set .

Module 3: PLOTTING

Lesson 3.1 – Plots and Figures .

Learning Objectives .

How can I visualize (plot) data in MATLAB?

How do I plot data pairs (points) in MATLAB?

How do I plot a function in MATLAB?

What is the difference between a figure and a plot?

CONTENTS 9

How can I enter nonlinear functions for plotting?

What are some possible errors with plotting?

How do I show multiple data sets on the same plot?

What are some other types of plots that MATLAB can generate? . . .

How do I plot on more than one figure in the same m-file?

What is the close command? .

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 3: PLOTTING

Lesson 3.2 – Plot Formatting .

Learning Objectives .

How can my MATLAB graph look nicer?

What are some terms I should know for plots?

How can I change the color and style of lines and markers on a plot? .

How can I make the function and points on the graph look nicer? . . .

How can I put a title and axis labels on my plot?

How can I add a legend to my plot?

How can I add a grid to my graph? .

How can I add special characters in my axis labels and title?

How can I change axis limits and tick labels?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 3: PLOTTING

Lesson 3.3 – Advanced Plotting .

Learning Objectives .

Does MATLAB have more plotting capabilities?

How can I create a bar graph? .

How can I create a 3D line plot? .

10 CONTENTS

How can I create a 3D surface plot?

How can I create a polar plot? .

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 4: MATH AND DATA ANALYSIS

Lesson 4.1: Basic Algebra, Logarithms, and Trigonometry

Learning Objectives .

What kind of mathematical functions and operations are available in
MATLAB? .

How do I use logarithmic functions in MATLAB?

What about a logarithm that is not natural?

How can MATLAB evaluate trigonometric functions?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 4: MATH AND DATA ANALYSIS

Lesson 4.2: Symbolic Variables .

Learning Objectives .

What is a symbolic variable? .

What is a MATLAB toolbox? .

How do I use symbolic variables? .

How do I clear specific variables? .

How can I convert from syms data type to other data types?

Can I replace a symbolic variable with a value?

How can I change the output format of syms?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

CONTENTS 11

Module 4: MATH AND DATA ANALYSIS
Lesson 4.3: Solution of Linear and Nonlinear Equations
Learning Objectives .
How do I solve for roots of a linear equation?
What is a nonlinear equation? .
How can I use MATLAB to solve nonlinear equations?
Is there a faster way to work with polynomial equations in MATLAB?
Can I plot with symbolic variables? .
Lesson Summary of New Syntax and Programming Tools
Multiple Choice Quiz .
Problem Set .

Module 4: MATH AND DATA ANALYSIS
Lesson 4.4: Differential Calculus .
Learning Objectives .
What is a derivative? .
How do I take the derivative of a function in MATLAB?
Where are derivatives used in engineering?
How do I find the derivative of a discrete function in MATLAB? . . .
Lesson Summary of New Syntax and Programming Tools
Multiple Choice Quiz .
Problem Set .

Module 4: MATH AND DATA ANALYSIS
Lesson 4.5: Integral Calculus .
Learning Objectives .
What is integration? .
How does MATLAB conduct symbolic integration?
Can MATLAB do numerical integration of discrete functions?
Example 2 .
Lesson Summary of New Syntax and Programming Tools
Multiple Choice Quiz .
Problem Set .

12 CONTENTS

Module 4: MATH AND DATA ANALYSIS

Lesson 4.6 – Linear Algebra .

Learning Objectives .

What is linear algebra? .

How do I add and subtract matrices?

Can I use math functions like sin() on matrices?

How do I perform matrix multiplication?

What is the difference between matrix and array operations?

How do I take the inverse of a matrix?

Can MATLAB do advanced matrix and vector operations?

How can I solve systems of equations with MATLAB?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 4: MATH AND DATA ANALYSIS

Lesson 4.7 – Curve Fitting .

Learning Objectives .

What is curve fitting? .

What is interpolation? .

How can I interpolate data in MATLAB?

What is spline interpolation? .

How do I conduct spline interpolation?

What is regression? .

How do I do regression in MATLAB?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

CONTENTS 13

Module 4: MATH AND DATA ANALYSIS

Lesson 4.8 – Curve Fitting: Plotting the Results

Learning Objectives .

How can I plot the results of curve fitting?

What are some common mistakes when plotting curve fitting results?

Multiple Choice Quiz .

Problem Set .

Module 4: MATH AND DATA ANALYSIS

Lesson 4.9 – Ordinary Differential Equations

Learning Objectives .

What is a differential equation? .

How do I set up and solve a differential equation?

How do I solve a higher order ODE?

What are the limitations of using the dsolve() function?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 5: CONDITIONAL STATEMENTS

Lesson 5.1 – Conditions and Boolean Logic

Learning Objectives .

What are conditions? .

What is Boolean logic? .

Can different data types be identified in MATLAB?

How can I round numbers in MATLAB?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

14 CONTENTS

Module 5: CONDITIONAL STATEMENTS

Lesson 5.2 – Conditional Statements: if and if-else

Learning Objectives .

What is a conditional statement? .

What is the if statement? .

What is the if-else statement? .

Can I use multiple conditions in a single expression?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 5: CONDITIONAL STATEMENTS

Lesson 5.3 – Conditional Statements: if-elseif

Learning Objectives .

What is the if-elseif statement? .

Independent vs. Dependent Cases .

What is the if-elseif-else statement? .

What is the difference between the else and elseif conditional clauses?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 6: PROGRAM DESIGN AND COMMUNICATION

Lesson 6.1 – Flowcharts .

Learning Objectives .

What is a flowchart? .

Multiple Choice Quiz .

Problem Set .

CONTENTS 15

Module 6: PROGRAM DESIGN AND COMMUNICATION

Lesson 6.2 – Pseudocode .

Learning Objectives .

What is a pseudocode? .

How are pseudocodes used? .

How can I convert a pseudocode for a problem into a program?

Multiple Choice Quiz .

Problem Set .

Module 6: PROGRAM DESIGN AND COMMUNICATION

Lesson 6.3 – Writing Better Code .

Learning Objectives .

How can I improve my code for computational efficiency?

How does hardcoding impact a program?

What are some tips for good comments and spacing?

Why does proper code indenting matter?

What are some tips for choosing inputs and outputs?

What are some tips for thinking ahead in when designing my program?

Multiple Choice Quiz .

Problem Set .

Module 7: FUNCTIONS

Lesson 7.1 – User-Defined Functions

Learning Objectives .

What is a function? .

What are the naming rules for functions in MATLAB?

How can I create functions in MATLAB?

Can I define functions in the program m-file?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

16 CONTENTS

Module 7: FUNCTIONS

Lesson 7.2 – Function Design and Communication

Learning Objectives .

How can I add a description for my function?

How can I define errors and warnings inside my function?

Multiple Choice Quiz .

Problem Set .

Module 8: Loops

Lesson 8.1 – while Loops .

Learning Objectives .

What is a loop? .

What is a while loop? .

Lesson Summary .

Multiple Choice Quiz .

Problem Set .

Module 8: Loops

Lesson 8.2 – for Loops .

Learning Objectives .

What is a for loop? .

How can I reference vectors inside of a loop?

Do I have to use the loop counter variable in the body of the loop? . .

When do I use a for loop vs. a while loop?

Lesson Summary .

Multiple Choice Quiz .

Problem Set .

Module 8: Loops

Lesson 8.3 – break and continue Commands

What are the break and continue commands?

How does the break command work in MATLAB?

CONTENTS 17

How does the continue command work in MATLAB?

Lesson Summary .

Multiple Choice Quiz .

Problem Set .

Module 8: Loops

Lesson 8.4 – Nested Loops .

Lesson Objectives .

What is a nested loop? .

How do nested loops work? .

How do loop mechanics apply to nested loops?

What is a “flag”? .

When should I use programming flags?

How can I use break and continue in nested loops?

Multiple Choice Quiz .

Problem Set .

Module 8: Loops

Lesson 8.5 – Working with Matrices and Loops

Learning Objectives .

How can I reference matrices in a loop?

How do I store values in a matrix using a loop?

How can I access specific areas of a matrix?

What is vectorization? .

How can I vectorize matrix operations in MATLAB

What are some tips I can use for vectorization?

Multiple Choice Quiz .

Problem Set .

18 CONTENTS

Module 8: Loops

Lesson 8.6 – Applied Loops .

Learning Objectives .

Why is this lesson important? .

How can I sort an array? .

How can I find the sum of a vector?

How can I plot different variations of a function using loops?

Multiple Choice Quiz .

Problem Set .

Module 9: READING FROM AND WRITING TO FILES

Lesson 9.1 – Reading from Files .

Learning Objectives .

Why read data from a file? .

How do I read numeric-only data from files?

What is a delimiter? .

How can I read numeric and character data from files?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

Module 9: READING FROM AND WRITING TO FILES

Lesson 9.2 – Writing to Files .

Lesson Objectives .

How can I write numeric data to files with MATLAB?

How can I write non-numeric data to files with MATLAB?

Lesson Summary of New Syntax and Programming Tools

Multiple Choice Quiz .

Problem Set .

CONTENTS 19

Module 9: READING FROM AND WRITING TO FILES

Lesson 9.3 – Navigating Directories in MATLAB

Lesson Objectives .

How do I set the current working directory for MATLAB?

How can I loop through the contents of a directory?

How can I create a new folder (directory) with MATLAB?

Multiple Choice Quiz .

Problem Set .

20 CONTENTS

21

22 CONTENTS

Front Cover

CONTENTS 23

Source: Designed by Ismet Handžić and Benjamin Rigsby

24 CONTENTS

Information

Authors: Autar Kaw, Benajmin Rigsby, Daniel Miller, Ismet Handzic

25

26 CONTENTS

License

Creative Commons License * Attribution-NonCommercial-ShareAlike 4.0 Inter-
national (CC BY-NC-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms
under the following terms

Attribution — You must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.
NonCommercial — You may not use the material for commercial
purposes.
ShareAlike — If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as the
original.

27

28 CONTENTS

Dedication

To Sherrie, Candace, Angelie, and Bucky J Barks (AK)

To Victoria (BR)

To my mother, Bonny Miller (1958 – 2015) (DM)

To my family (IH)

29

30 CONTENTS

Thoughts

“More than just teach you how to program, this course teaches you how to
think more methodically and how to solve problems more effectively. As such,
its lessons are applicable well beyond the boundaries of computer science it-
self. That the course does teach you how to program, though, is perhaps its
most empowering return. With this skill comes the ability to solve real-world
problems in ways and at speeds beyond the abilities of most humans.” - David
Malan, who teaches a general computer science course at Harvard to majors and
non-majors of computer science.

“Writing computer programs to solve complicated engineering problems and to
control mechanical devices is a basic skill all engineers must master” – Harry
Cheng who teaches computer programming to mechanical engineering under-
graduates at the University of California, Davis.

31

32 CONTENTS

Author Bios

AUTAR KAW

Autar Kaw is a professor of mechanical engineering at the University of South
Florida. He is a recipient of the 2012 U.S. Professor of the Year Award from the
Council for Advancement and Support of Education and Carnegie Foundation
for Advancement of Teaching.

Professor Kaw’s primary scholarly interests are in education research methods,
open courseware development, flipped and adaptive learning, bascule bridge
design, fracture mechanics, composite materials, and the state and future of
higher education.

Funded by National Science Foundation (2002-23), under Professor Kaw’s lead-
ership, he and his colleagues from around the nation have developed, imple-
mented, refined, and assessed online resources for open courseware in Numerical
Methods (http://nm.MathForCollege.com). This courseware annually receives
1,000,000+page views (http://mathforcollege.com), 2,000,000+ views of the
YouTube lectures (http://youtube.com/numericalmethodsguy), and 90,000+
visitors to the “numerical methods guy” blog (http://AutarKaw.org). This
body of work is also used in the understanding of the impact of the flipped,
blended and adaptive settings on cognitive and affective learning gains of engi-
neering students.

Professor Kaw has written more than 100 refereed technical papers and his
opinion editorials have appeared in the Tampa Bay Times, Tampa Tribune
and Chronicle Vitae. His work has been covered/cited/quoted in many media
outlets, including the Chronicle of Higher Education, Inside Higher Education,

33

http://nm.MathForCollege.com
http://mathforcollege.com
http://youtube.com/numericalmethodsguy
http://AutarKaw.org

34 CONTENTS

U.S. Congressional Record, Florida Senate Resolution, ASEE Prism, Times of
India, NSF Discovery, and Voice of America.

Web: http://AutarKaw.com

YouTube: http://youtube.com/numericalmethodsguy;

Blog: http://blog.AutarKaw.com;

Twitter: http://www.twitter.com/numericalguy

BENJAMIN RIGSBY

Benjamin Rigsby is a Ph.D. candidate in mechanical engineering at the Uni-
versity of South Florida (USF) in Tampa, Florida. He received his Bachelor of
Science degree in 2015 and Master of Science degree in 2017: both in mechanical
engineering from USF. After graduation, Ben plans to work in the industry as
an engineer in research and development.

Ben has been the instructor twice for the Programming Concepts for Mechani-
cal Engineers course at USF. He has worked as a teaching assistant since 2014
in several mechanical engineering courses while developing course materials and
assisting students. Ben also works as a research assistant at USF in the Reha-
bilitation Engineering and Electromechanical Design lab under the guidance of
his advisor Professor Kyle Reed. Ben’s research focuses on the areas of human-
robot interaction, force perception, and haptics.

In his spare time, Ben enjoys 3D printing, gaming, traveling, and making ed-
ucational online content. Contact information as well as further information
on his current research, teaching, and professional information can be found at
benjaminrigsby.com.

DANIEL MILLER

http://AutarKaw.com
http://youtube.com/numericalmethodsguy
http://blog.AutarKaw.com
http://www.twitter.com/numericalguy

CONTENTS 35

Daniel Miller is an alumnus of the University of South Florida. He majored in
mechanical engineering and received a B.S. degree in 2009, followed by an M.S.
degree in 2011. As a graduate student, he first worked as a teaching assistant for
the Programming Concepts for Mechanical Engineers course and then instructed
the class from 2010 to 2011. He received the USF Provost’s Graduate Teaching
Assistant Award in 2011.

Dan also worked as a research assistant in the field of numerical methods related
to the design and analysis of body armor systems using computational methods.
Dan is a registered Professional Engineer in Florida and a certified Project
Management Professional with the Project Management Institute. He is a co-
inventor of hybrid wearable body armor and was awarded a U.S. Patent for the
system in 2013.

Dan is currently employed as a mechanical design engineer in a multinational
company in Tampa FL and is a member of the U.S. Navy Reserve.

ISMET HANDŽIĆ

Ismet Handžić completed his Bachelor of Science degree in Mechanical Engineer-
ing at Western Kentucky University in 2009. Handžić continued his education
for a Master of Science degree in Mechanical Engineering at the University of
South Florida. After completion in 2011, he continued to pursue his Ph.D. de-
gree in Mechanical Engineering. The general topics included in his doctorate
dissertation involved walking rehabilitation, rolling dynamics, passive synchro-
nization and dynamics, string vibration, and computer simulation of walking
patterns.

36 CONTENTS

Handžić concluded his graduate work with twenty peer-reviewed publications
and five utility patents. During his time in graduate school, Handžić enjoyed
being a graduate teaching assistant, actively trying to find original ways to
create effective teaching materials. Subsequent to his studies, Handžić joined a
small startup company to develop three of his patented and licensed inventions.
These inventions included the Moterum M-Tip crutch tip and the Moterum
iStride stroke rehabilitation shoe.

Handžić’s successive positions in the industry included a mechanical research en-
gineer at a crossbow weapon manufacturer, analyzing and designing crossbow
components, and a system test engineer at an aerospace company designing and
programming electromechanical automated test equipment for electrical compo-
nents. His current employment is as a system test engineer at an IoT technology
start-up company, developing automated test equipment and programming var-
ious automated tests of IoT devices.

In his leisure time, Handžić likes to spend time with his wife and kids, tinker-
ing on small maker projects, programming, photography, playing his guitar, or
hammering on larger projects such as the contents of this textbook.

Preface

This book is intended for an introductory course in programming in STEM
(science, technology, engineering, and mathematics) fields while using MATLAB
as the programming language. MATLAB is a popular computational software
package used in universities and industries alike.
This textbook differentiates itself from others in two specific ways.

1) The textbook is suitable for the many engineering departments through-
out the nation that no longer teach a 3-credit hour programming course.
They weave programming and mathematical software packages such as
MATLAB in courses such as Foundations of Engineering, Freshmen De-
sign, Modeling of Systems, Engineering Analysis, Numerical Methods, etc.
This book is highly suitable for such audiences. To achieve these goals
and make the access far-reaching, we have been deliberate in keeping the
lessons short in length so that instructors can easily choose the course
content in a modular way.

2) The textbook is a stand-alone resource for learning programming where
the lectures complement the textbook rather than vice versa. This is
because of the reason above where in-classroom time is truncated, and
therefore students need to be more self-taught. For this reason, we have
been meticulous when selecting and organizing the textbook content to
include fundamental and application programming problems that prepare
students well for other problems they will solve in academia and industry.

The book has nine modules which have been each broken down by lessons.
There are 42 lessons in all and depending on the learning outcomes of the
course, an instructor can choose to assign only necessary lessons. Modules 1-3
focus on MATLAB and programming basics like the MATLAB program inter-
face, programming variables, different types of data, debugging, plotting, and
applications to science and engineering problems. In Module 4, we show the
use of MATLAB for basic mathematical procedures learned in the engineering
courses including nonlinear equations, integration, differentiation, simultaneous
linear equations, interpolation, regression, and ordinary differential equations.

37

38 CONTENTS

In Modules 5-8, the user is introduced to basic programming concepts of con-
ditional statements, repetition (loops), and custom functions. In Module 9,
program input/output is shown with writing to and reading from external files
as well as navigating directories with MATLAB. Important appendices include
a primer on matrix algebra, a collection of mini-projects, and a introduction to
animating plots in MATLAB. Appendix A provides a primer on matrix algebra.
Appendix B contains a set of mini-projects. Appendix C demonstrates how to
make animated plots in MATLAB.

Each lesson contains screenshots of actual MATLAB programs that are used
to help illustrate the concepts presented. More than 120 complete programs
are shown throughout this book to demonstrate to the reader how to use pro-
gramming concepts. The book is written in a USA-Today style question-answer
format for a quick grasp of the concepts.

The purpose of this book is to provide the reader with a firm basic understand-
ing of MATLAB syntax and fundamental programming concepts. Each lesson
contains MATLAB programs that are used to help illustrate the concepts pre-
sented. By no means do the authors claim to present every MATLAB command,
function, application, or programming concept in existence.

Contact Information

We would appreciate feedback, questions, or comments that you may have on
this book. We are especially looking for any typographical errors. We will
update these immediately with the publisher and also we will keep a complete
list of corrections at programming.autarkaw.com/errata.html.

You can contact the first author, Autar Kaw, via: Email: AutarKaw@yahoo.
com Telephone: +1 (813) 974-5626 Twitter: numericalguy Mailing Address:
Department of Mechanical Engineering, ENG030 University of South Florida
4202 East Fowler Avenue ENG030, Tampa, FL 33620-5350

39

mailto:AutarKaw@yahoo.com
mailto:AutarKaw@yahoo.com

40 CONTENTS

Acknowledgements

Kaw would like to thank his spouse, Sherrie, and children Candace and Angelie,
who encouraged him to first co-write this textbook with Miller, and now with
two more co-authors, Rigsby and Handžić. Miller would like to thank his spouse,
Lisa.

41

42 CONTENTS

What is New With This
Edition

We have rethought the layout of the book by grouping sets of lessons into
modules that address a specific set of fundamental topics as well as reordered
some lessons for learning clarity.

We have added ten new lessons and extended other lessons to more fully cover
programming fundamentals. Additionally, there are more than 50 new MAT-
LAB example codes.

Based on student feedback over the last seven years, we have reformatted the
whole book for readability and clarity.

We have added end-of-lesson summaries of the new syntax, functions, and com-
mands covered in each lesson to make referencing and reviewing faster.

New figures have been added to visually demonstrate fundamental concepts.

We have updated all syntax and example codes to reflect MATLAB, that is,
R2018b.

43

44 CONTENTS

A Note to Students

What will I be able to do after completing this book?
Imagine you are given a file that contains data of position and time of the path
of a rocket. By the end of this book, you will be able to read in the data from
the file(s), estimate position, velocity, and acceleration of the rocket, and plot
each of these dynamics variables simply by clicking “run” on your program. The
best part is, if you get new data or multiple sets of data from multiple rockets,
you can get all of these results again with only minimal additional work. This
is just one example of many real-world problems you will be capable of solving
after mastering the material in this book.

This textbook will give you a strong foundation in programming fundamentals
through MATLAB. Although some more advanced topics like object-oriented
programming are beyond the scope of this book, you will be able to solve the vast
majority of engineering problems you encounter in school and in the workplace
using the knowledge and skills you gain from this book.

Why should I learn programming? It may be a common belief that the con-
cepts learned in programming are only applicable to computers and computer
languages. However, this is not true. The various concepts of programming,
for example, a yes/no decision, are used in nearly every action we take while
interacting with the world in our daily activities. For instance, you may ask
yourself whether you should drink tea before going to sleep, or whether you
should exercise before eating a meal.

The typical sequential structure of a computer program is also used by us as we
order the events of our schedule to make sense. For instance, one would never
consider putting on their shoes before their socks. Logically, an individual will
first put on their socks, then their shoes and finally, they would secure the shoes.

David Malan who teaches a general computer science course CS50 at Harvard
to majors and non-majors of computer science (largest course at his institution
and the largest Massive Open Online Course (MOOC) on edX) sums it up the
best - “More than just teach you how to program, this course teaches you how
to think more methodically and how to solve problems more effectively. As
such, its lessons are applicable well beyond the boundaries of computer science
itself. That the course does teach you how to program, though, is perhaps its

45

46 CONTENTS

most empowering return. With this skill comes the ability to solve real-world
problems in ways and at speeds beyond the abilities of most humans.”

Furthermore, programming will teach you important debugging skills that are
useful in correcting all sorts of mechanical and electrical systems. You will learn
the steps to identify a problem, determine its cause, and finally devise a solution.
You will learn to be meticulous when comparing what you expect with what
you observe.

How can I use the book most effectively? After reading each lesson, do all of the
multiple-choice questions and as many exercise problems as you can (preferably
all). Practice is essential when learning to program. Cramming will not work,
and as with many other courses, repeated bursts of practice is the best method
to grasp the material (an hour or two each day). When completing the exercises,
it is highly recommended to work alone as the approach to new problems needs
to be learned individually. This will make your debugging and testing skills
much stronger, which will, in turn, make you a better programmer.

Pay careful attention to the “Important Notes” in the text. We have been delib-
erate about placing these in the lessons so that they can be helpful without being
overwhelming. They are meant to be a kind of pro-tip to tell you something
that some people only realize after making the mistake many times.

Also take advantage of the Index of terms, functions, and commands at the
back of the book. This can be a quick way to find that one function you need
to review.

How does MATLAB compare to other popular languages? MATLAB is a power-
ful programming language with many first-party functions and commands to do
all kinds of tasks like statistics, machine learning, controls, data analysis, mod-
eling, and user interfaces to name a few. It also has excellent documentation
compared to other popular languages due, in part, to the fact that MATLAB
is a proprietary language.

Learning MATLAB will give you a great foundation to transfer to other lan-
guages should you need to. Python is a popular open-source programming
language that has similar syntax compared to MATLAB. Suffice it to say, MAT-
LAB is a good choice as a first language both for its ubiquity in academia and
for its stellar documentation (make sure you take advantage of this!).

A Note to Instructors

Scope of Textbook We have endeavored to include all of the necessary funda-
mental programming syntax and skills for a student to solve most problems
they will encounter in STEM. We aimed to not only teach MATLAB syntax in
this book, but inform and inspire good programming, documentation, debug-
ging, and program planning and research practices. We believe that this will
prepare students well for tackling new MATLAB functionality and building on
the programming knowledge they gain from this book. A brief summary of the
objectives of each module is given below.

Module 1 introduces how to interact with the MATLAB program including
opening and saving m-files and its basic components like the Editor and Com-
mand Windows.

Module 2 introduces basic programming fundamentals including the concept of
a variable, different data types like numbers and strings, and numeric arrays
as used in the context of mathematics and MATLAB. The reader is introduced
to program design with user inputs and program outputs and is encouraged to
think about the beginning and the end of a program rather than just direct
solutions to a problem.

Module 3 introduces how to visualize different types of data in MATLAB, which
includes how to plot discrete data pairs directly as well as from discrete data
generated from continuous functions. Advanced visualizations in MATLAB are
covered including bar graphs and polar and 3D plots. The essential MATLAB
plot properties that accompany these plots are demonstrated.

Module 4 introduces how to use MATLAB functions to conduct differentiation
and integration, curve fit via interpolation and regression, solve for roots of
nonlinear equations, find solutions to simultaneous linear equations, and solve
ordinary differential equations.

Module 5 introduces conditions and conditional statements including the rele-
vant Boolean logic.

Module 6 introduces tools for program design and communication including
pseudocode and flowcharts. Tips for program design and communication are
also provided.

47

48 CONTENTS

Module 7 introduces user-defined functions where readers are shown how to
write their own custom functions. Tips on how to consider the user of a function
are also given.

Module 8 introduces loops and provides thorough coverage of the topic. Many
different cases are covered including use of matrices and loops together and the
obligatory summing, searching and sorting. Other examples include implement-
ing recursive formulas and approximating mathematical functions using infinite
series.

Module 9 introduces interacting with external files and directories. Methods
for reading from and writing to text and Excel files are given. Applications
demonstrating how to interact with data, once it has been read into MATLAB,
are also provided.

Appendix A provides a primer on linear algebra which describes fundamental
matrix operations used in programming such as addition, multiplication, in-
verse, and many more. Special types of matrices, such as symmetric, diagonally
dominant, identity and several more are also defined.

Appendix B contains a set of mini-projects that thoughtfully provide additional
practice to the student. Relevant modules are noted at the beginning of each
mini-project for easy reference.

Appendix C demonstrates how to animate 2D and 3D plots and data in MAT-
LAB.

Tips on Using the Book for Instructors

For this edition, the textbook was intentionally rearranged into nine modules
with a total of 42 lessons. The textbook will appeal to schools ranging from
where programming is introduced to freshmen in a first-year engineering design
course to those who have a full-fledged 3-credit hour course dedicated to pro-
gramming at a higher level. The intention is that the instructor would choose
the lessons that are appropriate in each module for their students based on the
course level and effort. Our recommendation for courses, such as Numerical
Methods with Programming or Engineering Analysis, where programming is in-
stead introduced as one of several topics, would be to safely skip the following
lessons: Lessons 3.3, 4.3 to 4.9, 8.6, 9.1 to 9.3.

At the end of most lessons, there is a multiple-choice question quiz and a set
of exercises. You should encourage students to finish both problem sets. The
course works well by assigning a set of mini-projects deliverable every other
week, and these have been included in the end of lesson exercises as well as in
Appendix B.

Students Program Submissions We have included instructions on publishing m-
files in Lesson 1.7. We have found it very helpful for students to include a
published version of their program. This is for three main reasons: 1) it reduces
the number of m-files that need to be run while grading, 2) the outputs are

CONTENTS 49

immediately shown after the appropriate code, which is helpful to both the
grader and the student, and 3) it encourages students to review the output of
each submitted problem.

50 CONTENTS

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.1 – MATLAB Introduction

Learning Objectives

After reading this lesson, you should be able to:

1) know why MATLAB is useful for engineers and scientists,

2) get MATLAB on your computer,

3) comprehend the free alternatives to MATLAB.

What is MATLAB?

MATLAB is a high-level programming language built for scientists and engi-
neers who work in academia and industry. MATLAB is relatively user-friendly
and provides many out-of-the-box tools and resources relevant to engineers for
mathematics, controls, data analysis, data manipulation, data acquisition, and
more (see MathWorks documentation for a full list of toolboxes).

This software has built-in abilities like plotting and statistical analysis that
many other popular programming languages do not have, which makes it at-
tractive to engineers who are more focused on the problem-solving rather than
the computer science happening behind the scenes. For example, MATLAB

https://en.wikipedia.org/wiki/High-level_programming_language
https://www.mathworks.com/products/matlab/why-matlab.html?s_tid=hp_brand_whymatlab
https://www.mathworks.com/products/matlab/why-matlab.html?s_tid=hp_brand_whymatlab
https://www.mathworks.com/products.html

CONTENTS

offers a “mean” function to compute the average of a set of data. The user
can simply use this function without specifically adding data values and then
dividing by the number of data values.

What is MATLAB used for in engineering and
science?

While MATLAB is capable of all of these and more, this topic will only cover
the essential utilities, while presenting practical examples. These essentials can
be further used to figure out the more advanced utilities.

• Data manipulation - Math operations, statistics, linear algebra, vector and
matrix manipulation, optimization, etc.

• Data Presentation - Plotting/graphing (2D/3D), animation (2D/3D),
graphical user interface (GUI) application, remote deployment, etc.

• Hardware Communication and Control - Sensor reading, actuator control,
signal processing, signal generation, etc.

• Media Processing - Computer/Machine Vision, audio recording/playback,
frequency analysis, etc.

• And much, much more…

How can I get MATLAB onto my computer?

MATLAB is a proprietary programming language held by its parent company
MathWorks, which means you, your school, or your company needs to pay for
a license to use it. You can see buying options and pricing at MathWorks, but
they do offer a student version.

If you do buy MATLAB and have the option to include toolboxes for a dis-
counted price, you should consider doing so. A student version can be down-
loaded for as low as $49 (as of November 2019). MATLAB is highly modular,
meaning that various specialized toolboxes can be added to the core software.
Some toolboxes come standard with MATLAB, while others have to be pur-
chased. Some of the toolboxes, such as the Symbolic Math Toolbox, are funda-
mental to common uses like solving equations.

http://www.mathworks.com/
https://www.mathworks.com/products/symbolic.html

CONTENTS

To install MATLAB, follow the usual procedure for your operating system.
There is no need to set up environmental variables, set a path to a compiler,
etc. (if you have done that for other programming languages). If you run
into trouble during the installation process, go to https://www.mathworks.com/
help/install/index.html for details on how to install your version of MATLAB.

Are there any free alternatives to MATLAB?

Not every engineer or engineering company is able to afford a software license to
use MATLAB. However, many universities and large companies provide MAT-
LAB licenses to students/employees free of charge, so check with your univer-
sity/company first! The list below shows the current most popular numerical
analysis software alternatives to MATLAB. In most cases, these alternatives
offer nearly identical commands and syntax/code structure.

1. Octave Online: fastest to use, no setup/install required

2. Octave: most common alternative, the closest program to MATLAB

3. SciLab and FreeMat.

Where can I find more information and help with
MATLAB online?

Complete documentation and examples on MATLAB commands and functions
can be found at MathWorks.com. We will go over how to use documentation
in later lessons. A good and complete MATLAB overview, relating to program-
ming and programming languages in general, can be found on Wikipedia.

Multiple Choice Quiz

The content of this page is intentionally blank

Problem Set

The content of this page is intentionally blank

https://www.mathworks.com/help/install/index.html
https://www.mathworks.com/help/install/index.html
https://octave-online.net/
https://www.gnu.org/software/octave/
http://www.scilab.org/
http://freemat.sourceforge.net/
https://www.mathworks.com/help/matlab/
https://en.wikipedia.org/wiki/MATLAB

CONTENTS

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.2 – Hello World

Learning Objectives

After reading this lesson, you should be able to:

1) perform the basic steps to start a new program in MATLAB,

2) run a simple program.

This lesson walks you through creating the classic “Hello World” program. Un-
like other lessons, we will not explain much of the “how” or “why” in this lesson.
You do not need to understand everything in this lesson: just observe! The pur-
pose here is to give beginning programmers something to relate to in subsequent
lessons.

Where can I find and open the MATLAB pro-
gram?

The procedure for opening MATLAB® is described in this section for Windows.
First, go to the start menu and look for “MATLAB” in the list of your installed
programs. Once there, click on the appropriate version of MATLAB installed on
your computer. Do not click on the “Activate/Deactivate” options if MATLAB

CONTENTS

is already installed on your computer. When the program opens, a window that
is similar to the one in Figure 2 should open.

Step 1: Create a New m-file

First, we need to create a file to store our program. In the top left portion of
the MATLAB screen, create a new m-file by pressing the “New Script”. Note
that in many languages a script is a common term for the file that holds your
code. Save the blank file as “helloWorld”.

Figure 1: Click “New Script” on the far left under the “Home” tab to open a
new m-file.

Step 2: Write the ‘Hello World’ Code

In this next step, we will write the code that will output/return our message:
‘Hello World’. Note that the green text after % will be ignored and will not be
executed. See Figure 2 if you are not sure where to type your code.

Figure 2: MATLAB window showing where to type your code (in Editor win-
dow).

CONTENTS

Example 1

Write a program that outputs the message “Hello World” to the user.
Solution

Figure 3: Output a message to the user.

Figure 4: The Command Window output for Example 1.

Step 3: Run the Program

To get our program to do something, we need to “run” the program. Figure 5
shows the “Run” button, which you should click to run the program. This is
located under the “Editor” tab in the toolbar (top left of screen).

CONTENTS

Figure 5: Run the program by clicking the highlighted button under the “Ed-
itor” ribbon tab (top).

Once the “Run” button is pressed, the program will execute our command. The
result of our code will show in the Command Window (the window on the right).

Step 4: Make Your Program a Little Fancier

Finally, we can do a couple more things to demonstrate some other simple
concepts. This time we will include our name and age in the “Hello World”
greeting. Again, just observe. Each of these concepts will be explained in the
lessons to come.

Example 2

Write a program that outputs a fancy “Hello World” to the user including your
name and age.

Solution

Figure 6: Output a fancier message to the user.

CONTENTS

Figure 7: The Command Window output for Example 2.

Multiple Choice Quiz

The content of this page is intentionally blank

Problem Set

The content of this page is intentionally blank

CONTENTS

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.3 – MATLAB Environment

Learning Objectives

After reading this lesson, you should be able to:

1) know the main components of the MATLAB environment,

2) use the MATLAB software to write code,

3) use the interface to find and set the current working location of MATLAB.

MATLAB Environment Windows and Parts

The MATLAB Environment is all the windows, sub-windows, and parts that
are part of the MATLAB program (note, both the software interface and the
actual computer language are called MATLAB). By default, the components of
the MATLAB Environment are laid out as shown in Figure 1. Note that we
are referencing MATLAB versions R2015a and above in this lesson. Previous
versions have some similarities, but R2012a and before are significantly differ-
ent visually (no ribbon navigation). However, the basic parts like the Editor
and Command Window are fundamentally the same throughout the different
versions.

CONTENTS

Figure 1: The major windows and section of the default setup of the MATLAB
Environment.
The following sections of this lesson will review the individual and major parts
of the MATLAB Environment seen above in Figure 1. You can refer back to
Figure 1 and/or open MATLAB to see physically where the different pieces are
as you progress through this lesson. It is essential for a beginner to understand
each component and its function to write MATLAB code.

Navigation Ribbon

As with most modern programs the navigation ribbon is a way to help users find,
understand, and use MATLAB software features efficiently and directly. The
navigation ribbon has different tabs that lump similar software functionality
together. Within a ribbon tab, you can find different groups. An example of
this can be found in the “Home” tab that includes the “File” group, which
includes various functions and options for working with MATLAB files such as
“New”, “Open”, or “Compare”.

Figure 2: The navigation ribbon in the MATLAB Environment.
The most common location on the ribbon that you will use is “Editor” tab.
Under the Editor tab, you can create a new m-file (a file for your code) and run

CONTENTS

that file. You can also see the “Save” button in the Editor tab, which will save
your m-file. Note that running the m-file automatically saves your m-file. One
way or the other, it is a good idea to save your files often.

The “Publish” tab contains functions that can be used to present your code and
MATLAB work in a presentable way. This functionality of the “Publish” ribbon
tab can be reviewed in Lesson 1.7.

The “Plots” and “Apps” tabs contain modules and functions that are shortcuts
to a specific piece of MATLAB code. Although the shortcuts can be convenient
and efficient to a particular workflow, they are not essential to this course: we
are just mentioning them informatively here. You may want to play around
with these ribbon tabs and explore their functionality later in the course.

Working Folder Location

The working folder location bar shows the current directory that MATLAB is
referencing (see Figure 3). This is the computer folder from which your code
will run. If the working directory is different than the location of your code,
MATLAB will prompt to change the working folder location (shown in Figure
4). The working folder location bar works in conjunction with the current folder
window, which is explained in the following section.

Figure 3: The working folder display in MATLAB.

Figure 4 shows the prompt you will get if the m-file you are trying to run is
not in the MATLAB current folder or on one of its (directory) paths. “Change
Folder” means: make the folder that contains this m-file the “current folder”.
“Add to Path” means add the folder location of the m-file you are trying to
run to the MATLAB paths. A path is a more permanent directory that MAT-
LAB will always look in when trying to find a program or function you are
running/calling. Simply put, choose “Change Folder” most of the time/if you
do not know. Neither option will “break” anything, and both should work fine
for our purposes.

CONTENTS

Figure 4: MATLAB user prompt to change the current working folder.

Current Folder

The current folder MATLAB Environment sub-window, shown by default on
the right-hand side of the window, shows you what files are in your working
folder location (see Figure 5). This includes all subfolders and any type of files
that are inside the working directory.

Figure 5: Current folder contents window in MATLAB.

Command Window

The Command Window has a number of different uses in MATLAB. Generally,
it acts as an output window and a temporary/quick coding environment. We
will cover this window in depth in Lesson 1.6.

CONTENTS

Figure 6: MATLAB Command Window.

Editor Window

While the Command Window can act as a temporary coding environment, the
MATLAB Editor window is used to write outlines of code, or a script, that can
be executed all at the same time. You can write an entire code sequence before
running it. We will cover this window more in-depth in the following lesson on
the m-file (Lesson 1.5). This window should not be confused with the Editor
tab. They are related, but not the same thing as you can see in MATLAB.

Figure 7: The Editor window (m-file editor) used to write and save a complete
code.

CONTENTS

Workspace

While programming, you will actively define variables to store data and values
for later use. Such memory storage can range from storing text and numbers to
storing large vectors and matrices. The workspace window (Figure 8) displays
all variables that are currently defined and stored into memory. It can be helpful
in that it shows different properties of that particular variable such as its type
(“Class”), its matrix dimensions (“Size”), or the amount of memory used to
store it (“Bytes”). You can even see quick facts about numerical data like the
mean of the data.

Figure 8: The workspace window that is used to monitor any MATLAB data
currently loaded into memory.

Status Bar

The status bar indicates the active status of the MATLAB program. Most of the
time, there will be nothing important to display here. However, one particularly
useful message is when MATLAB tells you it is “Busy” or “Waiting for an input”.
“Busy” generally means it is working on computations in the background from
the last code you asked it to run. “Waiting for an input” refers to MATLAB
waiting for a user input that you specified in your program (more on this in
Lesson 2.4: Inputs and Outputs).

Figure 9: The status bar that notifies the user of important MATLAB status
messages.

Multiple Choice Quiz

The content of this page is intentionally blank

https://www.mathworks.com/help/matlab/workspace.html

CONTENTS

Problem Set

The content of this page is intentionally blank

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.4 – Changing MATLAB Preferences

Learning Objectives

After reading this lesson, you should be able to:

1) choose different window layouts in MATLAB,

2) change the MATLAB user preferences.

Most of the MATLAB preferences covered in this lesson are just that. However,
there are a few changes that can make a functional difference while you are
learning to program, so it would be wise to familiarize yourself with the options
available.

How can I change the window layout in MAT-
LAB?

MATLAB makes it simple to change the position and layout in the MATLAB
program, and there are various ways to accomplish this.

One way is to use the layout options for each sub-window, which can be min-
imized, maximized, undocked, or closed by selecting the symbol in its upper
right-hand corner as shown in Figure 1. Note that undocking means that the

https://www.mathworks.com/help/matlab/matlab_env/preferences.html?s_tid=srchtitle

CONTENTS

window can be separately and independently moved around from the MATLAB
software (try it out!).

Figure 1: Changing view of a window in MATLAB.

If you happen to “lose” or accidentally close a window, the simplest way to
recover it is by selecting one of the MATLAB preset layout options that can be
found in the “Home” navigation ribbon and then under the “Layout” button as
shown in Figure 2.

Figure 2: Selecting a layout in MATLAB.

CONTENTS

Important Note: Moving forward, this course will assume that you
are working with the “Default” layout preset.

Changing Basic User Preferences

It is advantageous to change the default user preferences when working with
MATLAB. For example, choose a more readable font or font size. These pref-
erences may include visual/layout (font, font size) and functional (MATLAB
behavior) options. While there are many fundamental preferences that can be
changed, we will only demonstrate the font size here. Increasing the font size
can make dense, small code feel more readable and less overwhelming.

Preferences can be found on the “Home” ribbon, in the “Environment” group,
select the “Preferences” button as shown in Figure 3.

Figure 3: The MATLAB preferences location on the Home tab.

Once in the Preferences pop-up window (see Figure 4), select “Fonts” in the
navigation tree on the right-hand side. Then in the “Desktop code font” section,
select “12” as the font size. Once done, select “OK” at the bottom of the window.

Although it is not necessary to remember exactly how to change these prefer-
ences, it is good to keep in mind that most visual aspects of MATLAB are easily
changeable to suit your needs/preference.

https://www.mathworks.com/help/matlab/matlab_env/about-editor-debugger-preferences.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/matlab_env/about-editor-debugger-preferences.html?s_tid=srchtitle

CONTENTS

Figure 4: MATLAB preferences window.

Multiple Choice Quiz

The content of this page is intentionally blank

Problem Set

The content of this page is intentionally blank

CONTENTS

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.5 – The m-file

Learning Objectives

After reading this lesson, you should be able to:

1) open and name a new m-file,

2) use the m-file to be able to solve mathematical problems,

3) change and manipulate data in the m-file,

4) use comments in an m-file.

What is an m-file?

Just like how you may write a letter in a word processor program, one writes
a MATLAB program in an m-file. This type of file is unique to MATLAB, but
not much different than a text file which one could write or edit in text editors
such as Notepad.

The m-file brings a whole new level of organization and ease of modifications
to MATLAB that the Command Window cannot offer. The m-file and the
Command Window are independent of each other but they communicate like

CONTENTS

best friends. The m-file is where all commands will be input, saved and then
“run” through MATLAB, which evaluates the program and outputs the results
in the Command Window. Changing any input, command, variable name or
number in the m-file is easily done and does not require much time or effort.
This is unlike the Command Window where if you have performed, for example,
fifty statements, changing the first statement can be very difficult and time-
consuming. The m-file can also be saved by the user to any directory, and
reused or changed later. You can see examples of how this saved file (m-file)
looks in the Windows File Explorer in Figure 1.

Figure 1: This is what the m-file will look like in a file explorer (Windows in
this case).

**Where can I create a new m-file?

First, open MATLAB. Now, to open a new m-file, click the “Home” tab in the
top left corner of the MATLAB window (see Figure 2). Finally, click the “New
Script” button. Note that this is the same procedure we went through in the
Hello World lesson. A new window is now open in the MATLAB software; this
is the m-file editor. You can change how these windows (Editor, Command
Window, etc.) look in MATLAB, which we covered in Lesson 1.4.

Figure 2: Click “New Script” on the far left under the “Home” tab to create a
new m-file.

How do I save my m-file?

One of the most important things you can do in MATLAB is to save your m-file
correctly. You can save your work by clicking the “Editor” tab, then selecting

CONTENTS

“Save”. You should make sure to save it under a name that makes sense to you.
Do not keep the m-file name as the default “untitled1.m” as this can become
very confusing later when you need to find the correct program. Follow the
rules below for saving all m-files.

1. Do not start the m-file name with a number.

2. Do not place any spaces in the name of your m-file.

3. Do not use special characters in the name of your m-file such as *, /, +,
$, %, &, #, @, etc. Underscores are permitted in m-file names.

4. Do not use any predefined commands to name the m-file.

5. Do name the m-file something that makes sense to you.

How do I input variables and expressions into the
m-file?

MATLAB always reads the information in the m-file from top to bottom and
from left to right (like a book). Also, each line of the m-file has the variable
side and an expression side separated by an equal to sign. This is called an
assignment and should not be confused with what we call an equation. If, for
example, the lengths of two sides of a rectangle, a and b, are 2 inches and 6
inches, respectively, just type:

a = 2

b = 6

The data is now part of the m-file. Then, if we want to find the area of that
rectangle, all we would need to do is type:

area = a*b

What we just did was type three lines of code, each line containing an assignment
and altogether making a program. For MATLAB to run the program, and for
the programmer to receive an output, the m-file must now be “run”.

CONTENTS

How do I run the m-file?

Running an m-file can be done by clicking on the “Editor” tab in MATLAB
navigation ribbon, followed by clicking on “Run” (Figure 3). MATLAB will
now execute the m-file and perform whatever code is specified, and then display
the outputs in the Command Window. This is where the two independent
windows communicate with each other; the outputs of the m-file are sent to the
Command Window to be displayed. Figure 4 illustrates this for the example of
finding the area of a rectangle.

Figure 3: Run the program by click the highlighted button under the “Editor”
ribbon tab (top).

Figure 4: Using the m-file to solve for the area of a rectangle and displaying
the results in the Command Window.

Go ahead and make a few changes to the m-file and run it again. Notice that
the original information is still displayed in the Command Window. If we are
going to run this program many times with different inputs, we would want to
overwrite the old information and only display the up-to-date information in
the Command Window. We can do this by using the clc and clear commands.

CONTENTS

What are the clc and clear commands?

The clc command stands for clear Command Window. This command is used
and placed in the m-file (it may be used in the Command Window too), and
all the information preceding it gets cleared in the Command Window once
the m-file is run. The clear command clears the assignment of all variables
from a previous session (more specifically from the MATLAB “workspace”).
Together, both of these commands provide for a smooth operating m-file, and
it is considered good programming practice to make these commands the first
two lines of your m-file. Example 1 shows the clc and clear commands being
used in an m-file, and you will see this usage through the rest of the textbook.

How can I place comments in my m-file?

When you are writing a program, especially one that contains a large amount
of information, placing notes (called comments) to yourself or anyone else that
reads the code is beneficial. The MATLAB command to create a comment
is the percent sign (%) followed by whatever text is required for the comment.
Placing comments is essential and should be used to provide descriptions for the
variables, expressions, etc. in the m-file. Example 1 shows the use of comments
in an m-file. Note that comments do not affect the code and are not displayed
in the Command Window (comments are non-executable code). To display a
note in the Command Window, another command is required (see Lesson 2.4).

Example 1

Put a “comment” in MATLAB.

Solution

CONTENTS

Can I separate my code into parts within the m-
file?

MATLAB offers a special kind of comment called a section. You can think of
sections like a paragraph in an essay. It is useful to visually separate paragraphs
(sections), but they are part of the whole essay (program). To create a section in
an m-file, simply type ‘%%’. Notice the mandatory space after the two comment
characters. Sections allow you to do several useful things within your m-file,
including:

1. using the “Run Section” feature, which only runs the current section >
(wherever you last clicked). You can see this option right next to > the
“Run” button in the Editor tab (Figure 5). Note that clicking > “Run”
still runs the whole m-file as it normally would.

2. creating a more organized “published” m-file. You can see more > details
about the published files and how to make them in Lesson > 1.7.

3. organizing your code within your m-file. Sections provide visual > divi-
sions within the m-file as well. As seen in Figure 5, a > horizontal line
gets placed at the top of a section, and the > active section is highlighted
with a yellowish background.

CONTENTS

Figure 5: Using sections in an m-file.

Figure 6: Default color highlighting preferences in MATLAB.

What does the color highlighting in the m-file
mean?

By now, you have noticed that MATLAB highlights some text in different colors.
In Figure 6, you can see the default color preferences in MATLAB which describe

CONTENTS

how MATLAB color codes different text. You can see comments are selected as
green.

It is OK if you do not know what all of the terms mean (like “strings”) in Figure
6 as we will cover these in later lessons and all examples are color-coded appro-
priately. This is just to introduce you to the idea of color-coding in MATLAB.
You can find more information on the color settings page of MATLAB.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Clear the command window clc clc
Clear one or all variables clear clear
Add an m-file comment % % Any text can go here

Multiple Choice Quiz

(1). The clc command is used to

(a) clear the command window.

(b) erase everything in the m-file.

(c) delete all saved (workspace) variables.

(d) save the existing m-file.

(2). The command to place a comment into the m-file is

(a) %

(b) !

(c) ;

(d) &

(3). Which m-file is named correctly

(a) 1assignment.m

(b) assignment 1.m

https://www.mathworks.com/help/matlab/matlab_env/color-settings.html

CONTENTS

(c) assignment1.m

(d) assignment/1.m

(4). The clear all command is used to

(a) clear the command window.

(b) erase everything in the m-file.

(c) delete all saved (workspace) variables.

(d) save the existing m-file.

(5). Clicking “Run” in MATLAB in an m-file with five sections runs

(a) the whole m-file.

(b) only the first section of the m-file.

(c) nothing because “Run” does not work with an m-file containing sections.

(d) only the last section of the m-file.

Problem Set

(1). The weight of an object can be found using

𝑤 = 𝑚 × 𝑔

where,

𝑤 = weight (𝑁)
𝑚 = mass of the object (kg)

𝑔 = gravity (m/sec2)
Write an m-file to find the weight of a 30 kg Martian on earth (g=9.8 m/sec2)
and on Mars (g=3.7 m/sec2). Make sure to suppress intermediate outputs and
write comments in the m-file.

(2). You are asked to find the volume of a cylindrical storage tank. You know
that the interior diameter is 3 feet and the length is 5 feet. Write a MATLAB m-
file that finds the volume of this tank. Your boss needs the Command Window
to look nice, so be sure to suppress intermediate outputs and only show the final
answer in the Command Window.

CONTENTS

(3). Congratulations! You’ve just been hired at The Pressure is on Us, Inc. Your
first assignment is to write a MATLAB program that finds the pressure inside a
cylindrical storage tank. You know that the tank has a 2.15 m interior diameter
and is 4.55 m in length. You also know that the tank will hold 215 kg of an
ideal gas at 400 K. The pressure in the tank can be found using:

𝑝 = 𝑚𝑅𝑇
𝑉

where,

p is pressure (Pa)

m is mass (kg)

V is volume (m3)

T is temperature (K)

R is the ideal gas constant, 287.05 N ⋅ m
kg ⋅ K

Follow the expected rules of display of Command Window and comments in
m-file.

(4). A 12-volt battery and a switch are placed in parallel with the primary
windings of a transformer. The secondary windings are placed in parallel with
a resistor (See Figure A). Find the current traveling through the resistor after
the switch is closed.

You may use
𝑛𝑠
𝑛𝑝

= 𝑉𝑠
𝑉𝑝

, and 𝐼 = 𝑉
𝑅

where,

𝑛𝑠 = number of secondary windings

𝑛𝑝 = number of primary windings

𝑉𝑝 = primary voltage (V)

𝑉𝑠 = secondary voltage (V)

𝐼 = current (A)

𝑅 = resistance (Ω)

CONTENTS

Figure A: Electrical Schematic for Exercise 4.

(5). The applied normal stress on an object is, in general, defined as the force
acting on the object divided by the area the force is acting on. Assuming that
a force, 𝐹 = 252.2 lbs is acting in the direction as shown (see Figure B), find
the normal stress in the body that has the top cross-sectional area of 𝑎 = 2 in2.

Figure 1: figure22e_stress

Figure B: Object with a force acting on its top face.

(6). When a normal axial load is applied to a thin plate with a hole, the nominal
stress at the hole is amplified by a factor called the stress concentration factor,
𝑘𝑡. The maximum stress 𝜎maxis given by

CONTENTS

𝜎𝑚𝑎𝑥 = 𝑘𝑡𝜎𝑛𝑜𝑚

where,

𝜎𝑚𝑎𝑥 = the maximum stress in the body,

𝑘𝑡 = the stress concentration factor

𝜎𝑛𝑜𝑚 = the nominal stress.

For a thin plate with a center hole, the stress concentration factor 𝑘𝑡 is

𝑘𝑡 ≈ 3.0039−3.753 𝐷
𝑊 +7.9735 (𝐷

𝑊)
2
−9.2659 (𝐷

𝑊)
3
+1.8145 (𝐷

𝑊)
4
+2.9684 (𝐷

𝑊)
5

where,

𝑊 is the width of the plate

𝐷 is the diameter of the hole

If a force, 𝐹 of 1230 lbs is applied to a thin plate (see Figure C), find the peak
stress in the plate. The width of the plate is 30 inches, the diameter of the hole
is 1.25 inches, and the plate thickness is 1.25 inches.

Figure 2: figure23e_wholestress

Figure C: Thin plate shown with applied load, F for Exercise 6.

Hint: To find the nominal stress you may use,

𝐴𝑛𝑜𝑚 = (𝑊 − 𝐷) × 𝑇

𝜎𝑛𝑜𝑚 = 𝐹
𝐴𝑛𝑜𝑚

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.6 – The Command Window

Learning Objectives

After reading this lesson, you should be able to:

1) use the Command Window and understand its function,

2) control what appears in the Command Window,

3) access MATLAB documentation through the Command Window.

What is the Command Window and how can I
use it?

The Command Window (Figure 1) is the main window used to display the
program output in MATLAB. We can also program directly into the Command
Window; however, our code will not be saved in an m-file.

CONTENTS

Figure 1: The default MATLAB window configuration is shown with m-file
open. The Command Window is at the bottom center.

Table 1: Commonly used mathematical operators.

Operation Syntax
Add +
Subtract -
Multiply *
Divide /
Power ^
Square Root sqrt()

This means you can quickly test a few lines of code, use it as a calculator,
or check the value of a variable (see Figure 2). This also means it can be a
useful tool when debugging (find errors in the code) in your program. To use
basic mathematical operators and numerals, just input the statement and hit
the enter key. Table 1 shows a few common mathematical operators commonly
used in MATLAB. Note that when the answer is displayed, it is assigned the
name, ans, by default.

CONTENTS

Figure 2: Command Window used for a quick calculation (left), outputting the
value of a previously defined variable (middle), and a quick and small program
(right).

It is important to note that MATLAB does not understand what an equation
is as known to you in a traditional sense. In MATLAB there is a variable name
side and an expression side to any statement, and these sides are divided by an
“equal to” sign. The variable name is always on the left side and the expression
is always on the right side of an equal to sign. How this works is that MATLAB
reads a variable name and attaches that variable name to what is on the right
side of the equal to sign. This variable name is now associated with the number
or expression on the right side of the equal to sign. If you do not assign the
expression to a variable name, then MATLAB automatically assigns a default
name, ans, to the expression.

How can I suppress outputs in the Command
Window?

The Command Window will display the outputs of all executable code that is
in the m-file. In most cases, the programmer may only want the final solution
to be displayed, suppressing outputs of all other lines. Suppressing variables
can also decrease the run time of your program (if it is long). To make this

CONTENTS

possible, MATLAB has a special character that can be added to any line of
the m-file – the suppression character. This suppression is made possible by
inserting a semicolon (;) at the end of any line of code. It is important to note
that although the output of a line followed by the semicolon (;) is not displayed
in the Command Window, the calculation in the line is still being done “behind
the scene” by MATLAB. An example of using this character to suppress outputs
from the Command Window is shown in Example 1.

Important Note: Suppressing a line of code will only change whether
it outputs to the Command Window or not: it does not stop MATLAB from
performing the operation.

Example 1

Suppress variables from being output to the Command Window.

Solution

CONTENTS

Can I view help from the Command Window?

If you cannot remember syntax/usage while you are programming, the help
and doc commands can be used directly in the Command Window to pull up
documentation on a specific MATLAB function or command.

The difference between help and doc is that help contains a summary of the
documentation and displays directly in the Command Window (see Figure 3)
while doc opens a new window with the full documentation page from Math-
Works. Both are quick and easy ways to review documentation.

Can the Command Window do it all?

The Command Window does have limitations. In fact, it is rarely used to per-
form mathematical operations or for doing MATLAB programming. The main
reasons for this are that it is difficult to change expressions without overwriting
them and displaying useful information in the Command Window is cumber-
some. For the purposes of this book, the main role of the Command Window
is to only display the output information from a MATLAB file (also called an
m-file). Although it is important to understand the inner workings of the Com-
mand Window, the m-file is the basis of MATLAB programming as described
in Lesson 1.5.

Figure 3: Using the help command to retrieve documentation from the Com-
mand Window.

https://www.mathworks.com/help/matlab/ref/help.html
https://www.mathworks.com/help/matlab/ref/doc.html
https://www.mathworks.com/help/matlab/ref/help.html
https://www.mathworks.com/help/matlab/ref/doc.html
https://www.mathworks.com/help/matlab/ref/help.html
https://www.mathworks.com/help/matlab/ref/doc.html
https://www.mathworks.com/help/matlab/ref/help.html

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example
Usage

Suppress an output
(Command still processed)

; code;

Get summary of
documentation for a
MATLAB command or
function

help >>help disp

Open documentation page for
a MATLAB command or
function

doc >>doc disp

Add two variables + a+b
Subtract two variables - a-b
Multiply two variables * a*b
Divide two variables / a/b
Raise a variable to a power ^ a^2
Take the square root of a
variable

sqrt() sqrt(a)

Multiple Choice Quiz

(1). The MATLAB syntax to suppress output from the Command Window is

(a) %

(b) &

(c) supp(' ')

(d) ;

(2). Using the Command Window, 2^(4^2) will give the following output

(a) 16

(b) 256

(c) 512

(d) 65536

CONTENTS

(3). Using the Command Window, 2^4^2 will give the following output

(a) 16

(b) 256

(c) 512

(d) 65536

(4). In the Command Window, if we enter:

>>d = 5;

>>a = d^2

then the output of the last line is

(a) 5

(b) 10

(c) 25

(d) Undefined function or variable 'd'.

(5). In the Command Window, if we enter:

>>a = 5;

>>a = 6;

>>a

then the output of the last line will be:

(a) 5

(b) 5.5

(c) 6

(d) 11

Problem Set

Use the Command Window to complete the following exercises.

(1). Find the output of 𝑏 given that 𝑎 = 6 and 𝑏 = 12𝑎.

(2). Using Ohm’s law,

CONTENTS

𝑉 = 𝑖 × 𝑅

find the electrical current 𝑖 passing through a resistor of resistance 𝑅 = 2×103 Ω,
and a voltage potential 𝑉 = 12 V (DC).

(3). Find the area (in2) of a right-angled triangle that has a base measurement
of 4 inches and an adjacent angle of 32∘.

(4). Find the lift force in Newtons of an airfoil at a constant velocity (V) of 35
m/s, and in a fluid environment with a density (𝜌) of 1.247 kg/m3. The airfoil
has an exposed area (𝐴𝑒𝑥𝑝) of 2451 cm2 and the coefficient of lift is found to be
0.81. For your solution, you may use the formula for the lift force as:

𝐹Lift = 1
2𝜌𝐴exp𝐶lift𝑉 2

(5). Redo exercise 4 as follows. Find the lift force in Newtons using the same
fluid density, exposed area, and lift coefficient as stated in Exercise 4, but choose
the velocity first to be 25 m/s and then to be 50 m/s. Note that the values of
fluid density, lift coefficient, and exposed area are already stored in MATLAB.

Module 1: INITIAL
SETUP AND BASIC
OPERATION

Lesson 1.7 – Publishing an m-file

Learning Objectives

After reading this lesson, you should be able to:

1) know why MATLAB is useful for engineers and scientists,

2) know how to get MATLAB on your computer,

3) comprehend the free alternatives to MATLAB.

What does publishing do?

Publishing does several helpful things for you if you make good use of sections.
Each of the following reflects the use of sections to split up different portions of
the m-file (e.g., different exercises).

CONTENTS

Figure 1: Example of published format.

A published file:

• Automatically links the sections contained in the m-file at the top of the
published file. Click the link, and it takes you to that section.

• Can be saved in multiple file formats including .html and .pdf.

• Highlights each section and displays outputs directly below it.

• Shows comments as a description for each section (see below).

How can I publish in MATLAB?

In the toolbar, select the “PUBLISH” tab. Then click the “Publish” button on
the far right of this figure.

CONTENTS

Figure 2: Publish tab in MATLAB toolbar.

How can I get a PDF file of my published code?

You have two options to get a pdf. You can either change the publish settings
to publish natively in pdf, or you can convert the html file into pdf using your
internet browser.

1. Publish as HTML (default) Then Convert to PDF - Here are a couple of
tips for converting from html to pdf. Keep in mind you can open the .html
file in your web browser. So, you should start by doing that.

For Chrome and Microsoft Edge, go to print, click “Change” to change
printer, then click “Save as PDF” (for Chrome) or “Microsoft Print to
PDF” (for Edge), and select where to save the .pdf file. Other browsers
should have a similar procedure to save a .html file.

2. Publish Directly as a PDF - Click the arrow under Publish (seen in Figure
2) to open “Edit Configurations” (see Figure 3). Then change “Output
file format” from html to pdf. Remember, it will be html by default.

CONTENTS

Figure 3: Edit publishing configurations window where you can change the
output file format.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Create a new section %% %% section name

Multiple Choice Quiz

The content of this page is intentionally blank

Problem Set

The content of this page is intentionally blank

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.1 – Variables and Naming Rules

Learning Objectives

After reading this lesson, you should be able to:

1) define a mathematical variable,

2) define a programming variable,

3) determine legal and illegal variable names,

4) know the benefits of good practices for variable naming,

5) have guidelines for naming variables.

What is a mathematical variable?

A mathematical variable is a number that we do not know yet and may have
to solve for. For example, in the simple algebraic equation 2 + 𝑥 = 3, the
mathematical variable is x. A mathematical variable can also essentially be a
placeholder for substituting a variety/range of numbers. For example, we can
substitute any range of numbers into x in the function 𝑓(𝑥) = 𝑥 + 5 to find the
value of a function, 𝑓(𝑥). In a general sense, a variable varies its value. The
value of a variable may be arbitrary, not specified, or even unknown.

CONTENTS

What is a programming variable?

In computer programming, such as MATLAB, a programming variable con-
nects the name of a variable and a specific storage location in the computer
memory. For example, the variable x references/points to its allocated storage,
which contains some information about the variable; e.g., the value you assigned
to it. Figure 1 shows a simple graphical illustration of this concept.

Although a variable in computer programming can be used as a mathematical
variable, it can also be used for many more applications such as substitution,
information storage, iteration, value comparison, and much more. Do not worry
if you are not sure how to do any of these in MATLAB yet; subsequent lessons
will explain how to use variables for all of these.

How can I give my results a variable name of their
own?

You have seen variables used in previous lessons, but you did not know the
specifics about the concept or how to name them in MATLAB. To make sense
of the information that you are receiving and inputting into MATLAB, you can
assign names to the input, intermediate, and output variables. MATLAB allows
you to name variables simply by typing the desired name followed by an equal
to sign and then the operation. For instance, if you are using MATLAB to
find the area of a square, you may type, areaSq, then press the “equal to” key
followed by the operation of length times width. This will return the value of
the area. You can also recall or use this expression in a later operation simply
by typing in the variable name wherever it is needed. This is shown in Example
1.

CONTENTS

Figure 1: A simple visual representation of how variables are saved and called.

Important Note: When naming variables, you cannot start the vari-
able name with a number or use a space in the name. For example, 1cat and
cat 1 are illegal variable names. Also, cos is an illegal variable name because
it is used as a MATLAB function to calculate the cosine of an angle.

We will learn the MATLAB functions and commands later (throughout the rest
of the book). MATLAB is case sensitive, and hence some programmers only
use lower case script for variable names.

Example 1

Show examples of storing values in variables in MATLAB.

Solution

CONTENTS

Notice that in Example 1, the surface area of a cube, cubeSA, was found by
using the predefined name areaSq, instead of physically typing the required
dimensions to find the surface area. This is an example of recalling a previously
named expression to make the current calculation easier and more readable.

What are some possible problems with naming
an expression?

You have to be cautious when naming your expressions. Follow these rules for
naming.

1. Do not begin a variable name with a number.

2. Do not put a space anywhere in the variable name.

3. Do not name a variable as a predefined MATLAB command or function
name.

For example,

1. 1cat is an illegal variable name, as it starts with a number.

2. cat 1 is an illegal variable name as it has a space between characters.

3. cos is an illegal variable name as it is a predefined MATLAB function
that calculates the cosine of an angle.

MATLAB reads inputs from the top to the bottom and from the left to the
right of the page, similar to the way you might read a book. If you are using the
same variable name multiple times, MATLAB will always use the last assigned
value or expression to that variable name in its calculations. Example 2 below
shows an example of replacing expressions.

CONTENTS

Example 2

Examples of replacing an expression using the same name.

Solution

Note in the solution given below that although both SA and a are assigned values
twice, the numeric values associated with those names are different. The second
value of a replaces the first value and MATLAB uses this new value to calculate
the next expression for SA. Both variables have been reassigned new numeric
values or expressions.

Are there benefits to good practices for variable
naming?

Given that you stay within naming rules, you are free to use any variable name
you wish. However, just because you can choose any variable name does not
necessarily mean you should. Good variable names are essential to writing
efficient and understandable code. Choosing your variable names wisely can
have the following benefits:

CONTENTS

1. Readability and clarity - It is easier to follow and understand programming
code when proper variable naming techniques are followed.

2. Debugging - For more lengthy programming scripts, debugging (or trou-
bleshooting) of code becomes more efficient and manageable.

3. Collaboration - If you are working with someone on a piece of code, or if
someone needs to read and understand your code, it is important to name
your variables in a clear way. That someone could also be you trying to
figure out or reuse your code five years from now.

Are there some guidelines for variable naming
that I can follow?

This section contains a more explicit set of guidelines for naming your variables
in MATLAB. These are strongly recommended; however, MATLAB will not
give any errors if these are not followed. Failing to follow good naming con-
ventions, though, can make looking at a simple program seem intimidating and
frustrating. Also, note that different computer programming languages may
have different naming conventions.

1. A variable covering a large scope (used across a wide range of the program)
should have more specific and meaningful names.

• Good: voltageDrop, pullForce, outputTemperature
• Bad: vd, forP, To

2. A variable covering a small scope (used across a short range of the pro-
gram) should have short, disposable names. This guideline generally ap-
plies to loop counters or dummy variables.

• Good: i, j, elem
• Bad: looponeiteration, temporaryVariable10

3. Use CamelCase with leading lower case letters. Note the use of under-
scores between words (e.g., box_height = 5) is also common; however,
CamelCase will be used throughout this textbook.

• Good: pressureSensorOutput, boxHeight, width
• Bad: pressuresensoroutput, Boxheight, WiDtH

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Camel_case

CONTENTS

4. Avoid negating boolean (value of true or false) variable names (no double
negatives). The concept of boolean variables will be covered in Module 5:
Conditional Statements.

• Good: isGood, isMax, error

• Bad: isNotGood, isNotMax, noError

5. Do not make the variable name very long. Also, the maximum length of
variable names is limited to 63 characters. You will have to use your own
judgement beyond this constraint. In general, it must be long enough to
be descriptive, yet short enough to be memorable and useful.

• Good: avgPartStress, isTankLightOn

• Bad: averageStressInPartThatIsConnectedToTheOtherPart,
isTheFirstLightOnTopOfTheTankFlashingGreen

The following example shows a short MATLAB script with badly selected vari-
able names. For this example do not worry about the function of this specific
MATLAB m-file script. We have included examples and explanations for each
guideline to elucidate each point more clearly and hopefully impress them on
your memory.

CONTENTS

In the code below, we rewrite our first MATLAB script example to put our
guidelines into practice. Again, for this example do not worry about the function
or meaning of this specific MATLAB m-file program. Note that the added white
space and alignment further enhance readability.

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Store a value in a
programming variable

validName validName = 6
validName2 = 'some
text'

Multiple Choice Quiz

(1). A correct name for a variable is

(a) 1arearec

(b) area rec

(c) area_rec

CONTENTS

(d) cos

(2). What is the mistake in the following code (m-file is saved with the name
exercise_2.m)?

(a) The m-file name is invalid.

(b) One of the variables is called (referenced) before it is defined (assigned a
value).

(c) One of the variable names is invalid.

(d) None of the above

(3). An incorrect name for a variable is

(a) cat1

(b) cat_1

(c) cat_cos

(d) 1cat

(4). The following variable follows the rules of camelCase.

(a) AreaSquare

(b) areaSquare

(c) areasquare

(d) Areasquare

(5). The following program is given to you. What is the value of the variable
c?

CONTENTS

(a) 30

(b) 35

(c) 180

(d) 245

Problem Set

(1). Enumerate the benefits of good naming practices of variables.

(2). Enumerate guidelines for variable naming. Give examples of each enumer-
ation.

(3). Enumerate illegal variable names in MATLAB. Give an example of each.

(4). Write a program with proper names and good practices that calculates
the inertial force in a mass with an acceleration. The value of the mass and
acceleration are inputs (you choose these values) and the inertial force is the
output.

(5). Write a program with proper names and good practices that calculates the
current through a resistor. The value of the resistance and voltage are known
inputs (you choose these values) and the current through the resistor is the
output. Remember, 𝐼 = 𝑉

𝑅 .

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.2 – Characters and Strings

Learning Objectives

1) know the programming concept of a character/string,

2) use strings in MATLAB.

What is a character?

A character, or “char” in MATLAB, is a data type (we will cover what “data
types” are in Lesson 2.5) that is as simple as a one single unit: a text character.
This can be a symbol, letter, punctuation, space, etc.

In MATLAB, you can turn text into characters by using single quotes (e.g., 's',
'g'). The text will then turn purple signifying that MATLAB now recognizes
the text as characters, and has stored it that way.

Important Note: If it is a character, MATLAB does not recognize it as
numbers, variables, functions, etc. For example, '2+2' as a string of characters
does not equal 4. It is only text and will not be calculated.

https://www.mathworks.com/help/matlab/characters-and-strings.html

CONTENTS

Example 1

Assign the characters “1”, “n”, and “x” to three different variables.

Solution

Without recognizing the text as a character, MATLAB will think it is a variable
and ask the computer for its value. You can verify this for yourself by removing
the quotes on exChar2 or exChar3 (e.g., exChar2 = n).

What is a string?

A string is an array of characters (alphanumeric) and can be a word, a sentence,
or any other combination of characters. Strings are often used to display and
describe outputs in the Command Window. In MATLAB, a string is established
by the characters that are set within two single quotes (example: 'This is an
example of string theory'). Strings can be assigned to a standard variable
just like any other expression as shown in Example 2. They also have array
“properties” like referencing specific portions of the string as seen in Example
2. We will cover this in more detail in Lesson 2.6: Vectors and Matrices. For
now, just know that this is possible with strings.

CONTENTS

Example 2

Assign the text “Take 5!” to a variable.

Solution

What makes characters/strings special?

Example 3 demonstrates some of the things we have talked about so far in this
lesson. When using the characters, MATLAB will not recognize the text as
variables, numbers, etc. This is important to remember going forward. The use
of a variable in a string must be called in a special way, which we will learn in
Lessons 2.3 and 2.5. Writing a variable name inside a string, as shown in the
last line of Example 3, will not work!

Example 3

Show examples of the properties of strings.

Solution

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Use text in the
program

'some text' exStr = 'some text'

Reference part of a
string

exStr(1:4) ans = 'some'

CONTENTS

Multiple Choice Quiz

(1). Strings are designated by using

(a) / /

(b) ' '

(c) \ \

(d) " "

(2). What is the Command Window output of the following code?

(a) base = 2;

(b) T = '3*4'

(c) T = 12

(d) Nothing, there will be an error.

(3). Which of the following will perform the addition of the numbers 3 and 4
in MATLAB?

(a) sum = (3 + 4)

(b) sum = '3 + 4'

(c) sum = '3' + '4'

(d) All of the above

(4). What is the Command Window output of the following code?

(a) H = 'height'

(b) H = 2

(c) Undefined function or variable 'height'.

CONTENTS

(d) None of the above

(5). To store the phrase “Land of the Free” in a variable, the correct code is

(a) myVar! = 'Land of the Free!'

(b) myVar = Land of the Free

(c) myVar = 'Land of the Free'

(d) 'Land of the Free'

Problem Set

1. Store the phrase “Sweet Home Alabama” in a variable and suppress the
variable. Then call that variable and observe its output.

2. Write mathematical operations 7*(5+4) as a string and store in the vari-
able myString. Next, complete the operations as mathematical numbers
(answer should be 63) and store in the variable hwAnswer.

3. Use the characters % and ' in a string. Hint: since these are special
characters in strings in MATLAB, use doubles of each character (e.g., %%
and '').

4. Get the first name from the string 'John Smith', and store it in the
variable firstName.

5. Get the last name from the string 'Jane Doe', and store it in the variable
lastName.

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.3 – Working with Strings

Learning Objectives

1) concatenate (join) strings,

2) analyze and manipulate strings.

In this lesson, we will discuss a few common and useful string manipulation
MATLAB functions and techniques. However, there are many more MATLAB
string manipulation functions available than we can cover in this lesson.

How do I join two strings together?

The programmer can take multiple strings (that are assigned to variables) and
combine them – this is called concatenation. An example of concatenation would
be to combine several words to form a single sentence. Example 1 shows the
use of string concatenation.

Example 1

Assign the following two strings to two variables named, str1 and str2, in a
new m-file.

https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/characters-and-strings.html

CONTENTS

string 1 = 'Strings can'

string 2 = ' tie a knot.'

Concatenate the two input strings to form a single sentence and show this
sentence in the Command Window.

Notice the brackets used in the concatenation line (last line) of the m-file. This
is required to join the two strings together in this method (there are other
methods we do not cover here). The same process is also used if more than two
strings are to be joined together.

It is important that you do not try to concatenate strings and standard numerals
or numeric variables as it will not properly work. You can only join strings
together to form new strings.

How do I search and count strings?

This section gives you some examples of how MATLAB can analyze strings. We
will focus on only two functions, but you can refer to MATLAB documentation
for characters and strings to see a full list.

If you are presented with a lengthy piece of text and would like to see if a
word or phrase is contained within that lengthy piece of text, you can use the
contains() function. Another example of analyzing a string is to count how
many times a word or phrase occurs within the text by using the count()
function.

https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/ref/contains.html
https://www.mathworks.com/help/matlab/ref/count.html?searchHighlight=count()&s_tid=doc_srchtitle

CONTENTS

Important Note: The contains() function will return a Boolean (true
or false) value. It will return a 1 for true if it did find a match, and a 0 for false
if it did not find a match.

Example 2

You are given the sentence, That gray dog is chasing that yellow dog.

Check whether the sentence (string) contains the word (string) gray and count
how many times the word (string) dog occurs in the sentence.

How do I make a whole string lower or upper
case?

This section and the following one are a few examples of manipulating strings
with MATLAB. You can see a full list of the different functions for string ma-
nipulation MATLAB offers by reviewing the MATLAB documentation for char-
acters and strings.

Sometimes it is necessary to convert a string to all lower case or all UPPER
case letters. This may be particularly useful when comparing two user input
strings to each other such as 'Yes' and 'yes'. MATLAB offers the lower()
and upper() functions to accomplish this.

https://www.mathworks.com/help/matlab/ref/contains.html
https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/ref/lower.html?searchHighlight=lower&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/upper.html?searchHighlight=upper&s_tid=doc_srchtitle

CONTENTS

Example 3

You are given the sentence, How Is It Going, SmOOth cAt?

Convert the sentence (string) to all upper case letters (characters) and store it
in a variable. Repeat the process for lower case.

Can I split a string into its component pieces?

Often, it is useful to be able to split (or parse) strings when processing data and
this can be done by using the MATLAB function strsplit(). Data has to be
separated (delimited) by characters like a comma, space, or tab for strsplit()
to work.

Example 4

Split a single string, ‘sup,5,3,yes,no,54.0’, into multiple strings (pieces) based on
the comma delimiter. Next, split the string, ‘MATLAB does some cool stuff!’,
into multiple strings (words) based on the space delimiter.

Solution

https://www.mathworks.com/help/matlab/ref/strsplit.html
https://www.mathworks.com/help/matlab/ref/strsplit.html

CONTENTS

Important Note: The data that is read from each cell array is a string
even if it is shown as a number (e.g., '1'). (Note: Instead of using strsplit(),
you may also use the function split(), which outputs directly to a string array
instead of a cell array. However, split() is only available in MATLAB version
R2016b and newer.)

Example 5

Split a single string into multiple strings based on a delimiter.

Solution

The delimiter in the input string below is ; (semi-colon).

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Join (concatenate) strings together [] ['string1',

'string2']
Count the number of occurrences of a
pattern inside another string

count() count('the dog is in
the yard', 'the')

Check whether or not a string contains
the pattern string

contains()contains('the dog is
running', 'dog')

Convert all letters in a string to upper
case

upper() upper('tHis TeXt')

Convert all letters in a string to lower
case

lower() lower('tHis TeXt')

Split a string into pieces output as a
cell array

strsplit()strsplit('these;are;words',
';')

CONTENTS

Task Syntax Example Usage
Split a string into pieces output as a
string array

split() split('these are
words')

Multiple Choice Quiz

(1). The output of cat = ['cat' 'dog'] is

(a) catdog

(b) cat dog

(c) cat_dog

(d) CatDog

(2). The output of the last line is

(a) cat2

(b) cat 2

(c) Undefined function or variable 'as'.

(d) cat as

(3). To count the number of instances that one string occurs in another string
(pattern), one should use the function

(a) contains()

(b) count()

(c) check()

(d) howmany()

(4). To separate the phrases or pieces of a string, one should use the function

(a) phrases()

(b) pieces()

CONTENTS

(c) comp()

(d) strsplit()

(5). To search a string to see whether in contains another string (pattern), one
should use the function

(a) search()

(b) contains()

(c) ismember()

(d) find()

Problem Set

(1). Concatenate the following strings:

cm1 = 'My name is'
cm2 = 'Slim Shady.'

How would you change the string(s) so that there is proper spacing between
each word?

(2). Count how many times the character ‘e’ occurs in the string 'Programming
is important for mechanical engineers.'

(3). Check whether each of the following strings contains the corresponding
patterns.

String: 'My name is Slim Shady.' Pattern: 'name'

String: 'My name is Slim Shady.' Pattern: 'Eminem'

String: 'The United States of America' Pattern: 'Unit'

(4). Store the sentence “Watch out!” in a variable, and then convert it to all
upper case letters.

(5). Split the string 'The,United,States,of,America' into its pieces using
the strsplit() function and the comma delimiter.

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.4 – Inputs and Outputs

Learning Objectives

1) get/store user defined inputs with the input() function,

2) output messages to the Command Window with disp() and fprintf()
functions.

How can I get input from the user?

When a computer programmer hands over a completed program to whoever is
going to use it (called the end-user), they typically do not ask the end-user to
modify the code. Rather they might prompt the user for the required inputs
and then let the program run. The input() function prompts the user in the
Command Window to enter a value for a designated variable. The value of this
variable will then be used in the program.

Function: Prompts the user for an input.
input()

Function Inputs:
Variable value which is requested, x
String to prompt the user for the variable input, 'the value of x is'

CONTENTS

Example Usage:
x = input('the value of x is')

Until the user enters a value for a designated variable in the Command Window,
that variable is not defined, and the program will not continue to run. (Note,
this is why m-files cannot be published with input() function.) These undefined
variables and the pause in the program can cause some troubleshooting issues.
If you find that your program is not running properly, check the lower-left corner
or the Command Window for the message: 'waiting for input' and assign
values as needed. To cancel the program from running altogether, hit Ctrl+c
while in the Command Window (while it is the “active” window). The use of
the input() function is being shown in Example 2.

How do I display notes in the Command Win-
dow?

Like comments in the m-file, displaying information about a program in the
Command Window is also important. Information such as the programmer’s
name, the purpose of the program and the variables involved in the calculation
may be needed to make the output information clear. MATLAB uses several
functions to display information in the Command Window. This section will
cover the two basic functions that can be used in the m-file to display information
in the CommandWindow. These functions are the disp() and fprintf() functions.

Function: Displays a single string or variable.
disp()

Function Inputs:
Test String, 'Hello', OR, Expression name, x

Example Usage:
disp('Hello')
disp(x)

Example 1

Output the string “The height of the beam is” and the variable height = 12.63
using two separate disp() functions. Then concatenate the given string and
variable into a single string and output it using disp().

Solution

CONTENTS

The disp() function displays either a string or a variable in the Command
Window. disp() does not require or allow you to manually create new lines.
It will do this automatically (see the Command Window output in Example
1). In Example 1, we should several use cases for disp(). Notice that you can
output a variable with a message, but it requires you to concatenate them into
one string.
Function: Can display from more than one input (both variables and a descrip-
tion).
fprintf()

Function Inputs:
String, 'Note about the number'
Expression name, x (can be more than one)
Conversion character, (%g, %f, %d, etc.)
Example Usage: fprintf('\n note about the number %g \n', x)

The fprintf() function is used to make the Command Window look more
organized and easier to follow. The text (string) that is inside the quotes will
be displayed to provide a description of a variable, and the %g is where the
variable will be placed in the string. The %g, known as a conversion character,
sets the display format for the number (e.g., exponential or decimal format)
and tells fprintf() what type of data to expect there (e.g., number or string).
The fprintf() function does not start a new line to display its information,
so we use the \n line character. This line character starts a new line, and
the \n is not displayed in the Command Window. The last item one needs to
provide for the fprintf() function is the name of the variable to be displayed.
Example 2 shows the fprintf()functions being used in an m-file. See Table 1
for commonly used formatting characters that are used inside fprintf().

CONTENTS

Table 1: Formats to be used with the fprintf() function.

Task Formatting Character
Example of
Placement

Add a line space (enter key) \n fprintf('\n
note %g',a)

Default display %g fprintf('\n
note %g',a)

Fixed point display %f fprintf('\n
note %f',a)

Single character display %c fprintf('\n
note %c',a)

Scientific notation display %e fprintf('\n
note %e',a)

String display %s fprintf('\n
note %s',a)

Adjust field width (MATLAB
controls this automatically)

Any whole number
(Using 6 as an
example)

fprintf('\n
note %6f',a)

Adjust precision (change amount of
numbers after the decimal point)

Any whole number
(Using 2 as an
example)

fprintf('\n
note
%.2f',a)

Understanding the correct method for naming and placing variables in the m-
file as well as the order in which MATLAB reads these inputs are the core
foundations for writing any program in MATLAB. It is very important to make
the program as easy for the user or reader as possible. Using the display disp()
and fprintf() functions in conjunction with the suppression character (;) and
clc command is vital. These functions provide a good foundation for any m-file.

Example 2 shows the input(), disp(), and fprintf() functions being used
together in a single program. The usage of each character is shown with a
generic fprintf() function call. Table 1 shows other formatting characters
that are commonly used with the fprintf() function.

Example 2

Calculate the age of the user based on the inputs of what year they were born
and the current year. Output the inputs (birth and current years) and the result
(age) in the Command Window with a description of the numbers.

Solution

CONTENTS

The Command Window output for Example 2 is shown below, which after the
user entered the desired input.

Lesson Summary of New Syntax and Program-
ming Tools

CONTENTS

Task Syntax Example Usage
Ask the user for an input input() input('What is

your age?')
Display a note in the Command Window disp() disp('note')
Display a variable with a note in the
Command Window

fprintf() fprintf('note
%g',a)

Multiple Choice Quiz

(1). To display, Question 2, in the Command Window, the correct syntax is

(a) disp(Question 2)

(b) display('Question 2')

(c) disp('Question 2')

(d) Question 2

(2). Although not typically necessary, one can use which of the following to add
a new blank line?

(a) disp(' ')

(b) disp('\n')

(c) disp(\n)

(d) disp()

(3). What is the output of the following code? Assume the user inputs the
number 10 when prompted.

(a) pressure = 2

(b) pressure = 2.0

(c) 2

(d) 0.5

CONTENTS

(4). The correct fprintf() usage to display the variable myString = 'strings
are fun' is

(a) fprintf('I think %s, but they do not agree!\n')

(b) fprintf('I think %.3f, but they do not!\n')

(c) fprintf('I think %e, but they do not!\n',myString)

(d) fprintf('I think %s, but they do not!\n',myString)

(5). To output the variable length = 8.40235 with two decimal places, use

(a) fprintf('The length is %g\n',length)

(b) fprintf('The length is %2d\n',length)

(c) fprintf('The length is %2f\n',length)

(d) fprintf('The length is %.2f\n',length)

Problem Set

(1). Print out the following string in the Command Window using fprintf().

cm1 = 'My goal is to become an engineer.'

(2). Find the product of any two numbers by using input() to prompt the user
to enter the numbers in the Command Window. Use fprintf() to display the
product of the numbers in the Command Window.

(3). Find and output in the Command Window the kinetic energy of an object
of mass, m traveling at a specified instantaneous velocity, v. Use the input()
function to prompt the user to enter the values of the mass (kg) and velocity
(m/s).

Use fprintf() to display the numeric value of the kinetic energy (J) of the
object. Be sure to add a good description for the input() and fprintf()
functions to avoid any miscommunications (that is, display the units as well).
Hint: The formula for kinetic energy is

KE = 1
2𝑚𝑣2

.

CONTENTS

(4). Write a program in MATLAB that outputs the maximum tensile normal
force that a steel cylindrical tube can handle without breaking. A factor of
safety n and inner and outer diameters (meters) of the tube are specified by
the user. The fprintf() function must be used where needed for a detailed
description. The other specifications and formulas are given below.

𝜎steel = 245 × 106Pa,

𝜎Safe = 𝜎steel
𝑛 ,

𝐹Safe = Area (𝜎Safe) ,

Area = 1
4𝜋 ((𝐷outer)

2 − (𝐷inner)
2) .

where,

𝐷𝑖𝑛𝑛𝑒𝑟 is the inner diameter (m) of the tube,

𝐷𝑜𝑢𝑡𝑒𝑟 is the outer diameter (m) of the tube,

𝜎steel is the yield strength of steel (does not require the input() function).

(5). The monthly payment on a car loan is given by the formula

𝑃𝑀𝑇 = 𝐿𝐴 ∗ 𝐼𝑃𝑀
1 − (1 + 𝐼𝑃𝑀)−𝑁𝑀

where,

PMT = monthly payment in dollars,

LA = loan amount in dollars,

IPM = interest rate given as a fraction per month (Note the units),

NM = number of monthly payments (Note the units).

Write a MATLAB program that calculates the monthly payment for buying a
car, based on the loan amount (dollars), length of the loan (years) and interest
rate (annual percentage rate). Three inputs are assigned at the beginning of
the worksheet through a variable assignment:

1. Loan amount entered in dollars, LA

2. Length of loan entered in integer years, NY, and

3. Interest rate entered in annual percentage rate (APR), APR.

The output is:

CONTENTS

1. The monthly payment on the car.

Display and print with an explanation at least the following in the Command
Window.

• A short description of the problem,

• Loan amount in dollars,

• Length of loan in integer years,

• Interest rate in annual percentage rate,

• Monthly payment in dollars.

Example to compare our MATLAB program against:
For a loan of $14,800 at 6.75% annual percentage rate (APR) for a 4 year term,

𝐿𝐴 = $14, 800
𝐼𝑃𝑀 = 𝐴𝑃𝑅/(12 ∗ 100) = 6.75/(12 ∗ 100) = 0.005625
𝑁𝑀 = 𝑁𝑌 ∗ 12 = 4 ∗ 12 = 48 months

Hence,

𝑃𝑀𝑇 = 14800 ∗ 0.005625
1 − (1 + 0.005625)−48

= $352.69

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.5 – Data Types

Learning Objectives

1) account for the programming concept of a data type,

2) convert between data types,

3) check the data type of any variable in MATLAB.

What is a data type?

In computer programming, a data type is classification (or type) of the data you
use to program. That is, MATLAB categorizes each variable or any piece of data
into different groups. For example, MATLAB will treat a numeric integer (1, 5,
99, etc.) differently than an alphabetical character (“a”, “U”, etc.). Recall from
Lesson 2.4 (Inputs and Outputs), we had to include in the fprintf() function
what data type we were giving it (e.g., %s for string).

MATLAB refers to the different data types as fundamental MATLAB classes:
MATLAB uses “data type” and “class” interchangeably. For someone familiar
with object-oriented programming (C, C#, Java, etc.), this may be a little
confusing. However, for the scope of this lesson, do not overthink this concept.

https://www.mathworks.com/help/matlab/ref/fprintf.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/matlab_prog/fundamental-matlab-classes.html
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)

CONTENTS

What are the MATLAB data types?

While the range of data types that a programming language supports varies
with the language, MATLAB solely works with six fundamental data types.
Fundamental MATLAB data types are:

• Numeric - 1, 2, -54, 4.56

• Logical - True, False

• Character - ‘g’, ‘M’, ‘.’, ’ ’

• Cell - Can contain any data type

• Table - Data stored in tabular format

• Struct - Data related to groups using data containers called fields

While there are multiple data types available to MATLAB users, this course
will focus on the most common: numeric, logical, and character/strings.

Why are data types important?

The types of data (and therefore the “data types”) you will use in MATLAB will
vary depending on their function and application. Some MATLAB functions
only accept a specific data type, while other functions accept multiple forms
of data. For example, MATLAB function fprintf() requires a character data
type input (e.g., fprintf('hey there!')), while the mean() function requires
numeric data types (e.g., mean(1.0, 2.5, 2.0, 3.0, 6.6)).

How do I check the data type of a variable?

Let’s say you want to know the data type of a variable. For example, you want
to probe the variable myVariable and find out its data type. This is achieved
using the class() MATLAB function. Note that in the following example, the
output is double, which is a sub-data type of the numeric class (data type).

https://www.mathworks.com/help/matlab/data-types_data-types.html
https://www.mathworks.com/help/matlab/ref/fprintf.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/mean.html
https://www.mathworks.com/help/matlab/ref/class.html
https://www.mathworks.com/help/matlab/ref/double.html

CONTENTS

Example 1

Store the number 5.678 in a variable, and check the data type (class) of the
variable.

Solution

As a side note, notice that there are three consecutive dots used in Example 1
so that the fprintf() function can be written on two lines. This will work in
many other cases, which you will see in future examples. One important rule
for using this is that it cannot be used in the middle of a string or a number.

You can ask MATLAB if the particular variable is a specific data type, where
MATLAB will respond with either yes, true (1), or no, false (0). This is achieved
using a variety of MATLAB data type identification functions.

One of these functions, ischar(), is used if you would like to see if a particular
variable is a character data type. In the following example, a numeric double
input of 5.678 into the ischar() function returns false, which means that

https://www.mathworks.com/help/matlab/data-type-identification.html
https://www.mathworks.com/help/matlab/ref/ischar.html
https://www.mathworks.com/help/matlab/ref/ischar.html

CONTENTS

5.678 is not a character. On the other hand, notice that isnumeric() will
return a true.

Example 2

Conditionally check whether a variable is the char data type or a numeric data
type.

Solution

The use of string() in the last two lines of the code is to convert the logical
value (0 or 1) to “false” or “true”, respectively, for readability. You can see the
output of this below. We will cover logical data types in Lesson 5.1; so, you do
not need to worry about this conversion right now.

https://www.mathworks.com/help/matlab/ref/isnumeric.html

CONTENTS

Can I convert between data types?

MATLAB provides functions to convert between most data types. Many of
these have straightforward names like num2str(), which converts a number to
a string, or character array. Others are simply the name of the MATLAB class
like char() or double(). We will cover more of these functions as appropriate
in the following lessons. You can review MATLAB documentation for a full list
of data type conversion functions.

Example 3

Convert the number 5.678 into a string.

Solution

https://www.mathworks.com/help/matlab/ref/num2str.html
https://www.mathworks.com/help/matlab/ref/char.html
https://www.mathworks.com/help/symbolic/double.html
https://www.mathworks.com/help/matlab/data-type-conversion.html

CONTENTS

Another common example of where data types become important is that you
cannot directly join a string and a number to form a new string. To concatenate
a number with other strings, you must first use the num2str() function on the
number. The num2str() function converts a number to a string, thus making
the number capable of joining with other strings. Conversely, to convert a string
to a number use str2num() function. Though it should be noted that this will
only work if the characters are numbers. The difference between numbers and
characters that are numbers was covered in more detail in Lesson 2.2.

Example 4

Input the following two strings and expression, str1, str2, and n, respectively
into a new m-file.

str1 = 'Strings can tie'

str2 = 'or more knots'

n = 3

a) Convert the variable, n to a string and concatenate these three strings into
a single sentence, “String can tie 3 or more knots.”, and output it to the
Command Window using the fprintf() function.

b) Convert the variable, n back to a number and output the sentence “You are
making at least 3 knots.” to the Command Window using the fprintf()
function.

Solution

CONTENTS

You can see that the m-file in Example 4 uses three pieces to make a full sentence,
where one of the pieces is defined as a number, n, and requires the use of the
num2str() function to be concatenated with the two other strings. It must
be converted to a string because all three pieces (variables) must be strings,
or more precisely, they must all be of the char data type. The variable str3,
which stores the character 3, is then converted “back” to a number data type,
as a demonstration. This is accomplished using the str2num() function. The
variable str3 is then a number and can be used with the fprintf() function and
the %g format.

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example
Usage

Check the data type
(class) of any
variable

class() class(a)

Convert a numeric
value to a double
precision number

double() double(a)

Check if a variable
is a numeric data
type or not

isnumeric() isnumeric(a)

Convert a variable
to a char data type
(equivalent to a
string)

char() char(a)

Check if a variable
is a char data type
or not

ischar() ischar(a)

Convert a number
to a string

num2str() num2str(a)

Convert a string to
a number

str2num() str2num(a)

Multiple Choice Quiz

(1). The num2str() function

(a) converts a number to string

(b) converts a string to a number

(c) concatenates numbers and strings

(d) concatenates strings

(2). The function to check the data type of a variable in MATLAB is

(a) type()

(b) class()

(c) datatype()

CONTENTS

(d) var()

(3). To convert a scalar variable to a string (character data type), one should
use the function

(a) char()

(b) scal2str()

(c) var2str()

(d) str2num()

(4). What data type do the conversion characters %g, %f, and %e correspond to
in the fprintf() function?

(a) char

(b) numeric (includes double)

(c) logical

(d) struct

(5). To check if the stored value of a variable is numeric or not, one should use
the function

(a) ischar()

(b) isnumeric()

(c) isspace()

(d) isletter()

Problem Set

(1). Define the variables in MATLAB given below and check the data type
(class) of each one. Display the value of each variable along with its data type
using fprintf().

myString = 'Test string'

myNum = 100

(2). Using the variable age = 30, form a string that says, “My age is 30.” Store
this string in a variable called myAge.

CONTENTS

(3). Using the functions ischar() and isnumeric(), check the variables given
below to see whether or not they are the character or numeric data type. You
should do both checks for each variable.

units = 'Newtons'

myNum = 50

(4). Start by checking the data type of the variable var = 83. Next, convert
var to the char data type, store this string in a variable called strVar, and check
the data type of this variable. Display both variables and their corresponding
data types using fprintf().

(5). Using the variable age = '30', convert it to a number and store it in a
variable named ageConv. Use fprintf() to print both variables with proper
formatting.

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.6 – Vectors and Matrices

Learning Objectives

1) define vectors and matrices in MATLAB,

2) manipulate vectors and matrices effectively with common MATLAB syn-
tax,

3) reference strings as vectors (arrays).

Why is the program called MATLAB?

MATLAB stands for Matrix Laboratory, and as the name implies, MATLAB is
designed to solve problems using matrices. When MATLAB was originally de-
signed, the basis of the program was to solve all problems using matrix algebra.
Even if the user is conducting simple scalar operations, MATLAB will store
these scalar values in a matrix of the size 1×1. By storing all values as matrices
and using solvers based on matrix algebra, MATLAB programmers were able
to achieve high efficiency, and hence low computational solving time.

In previous lessons, all the programs for the examples were written using scalar
operations and variables. (Scalar means “one number”.) We now know that
MATLAB has stored these scalar values as matrices for all required m-file op-
erations. This lesson will discuss the use of matrices and matrix operations in

CONTENTS

MATLAB. If you are not comfortable with basic linear algebra concepts, see
the Primer on Linear Algebra in Appendix A at the end of this textbook.

What is a matrix?

A matrix is a special organized way of representing groups of numbers. This
organized form is similar to a grid or table, but where each cell, or “element”, has
a standard reference. Matrices have two dimensions/directions called rows and
columns. (Two dimensional matrices can be stacked to form three dimensional
matrices, but we do not need to worry about this for now). In Figure 1, we see
the standard notation for referencing an element in a matrix.

Figure 2 shows an example of how a matrix of numbers is often written on
paper. In the bottom right of the figure we have noted the size of the matrix
(the number of rows and columns). However, this is not mandatory or standard
to write with each matrix explicitly.

Important Note: When reporting the size of a matrix, the number of
rows is followed by the number of columns (e.g., 2×3 in Figure 2).

Do I need to know any special types of matrices?

Yes, there are several uses for a special type of matrix in linear algebra. Exam-
ples include an identity matrix, a symmetric matrix, and an upper-triangular
matrix. MATLAB even has dedicated functions to create some of these matri-
ces. For example, eye() creates an identity matrix of any size you input. We
will discuss these special matrices more in Module 8.

https://www.mathworks.com/help/matlab/ref/eye.html

CONTENTS

Figure 1: Generalized example of a matrix (size: m × n).

[12 0 43
5 33 1.2]

2×3

Figure 2: A matrix with 2 rows and 3 columns (size: 2 × 3).

What is a vector?

A vector is a category of matrices, a one-dimensional matrix. This means it has
only one row (a row vector - see Figure 3) or one column (a column vector - see
Figure 4). As mentioned before, the numbers to the bottom right of the vector
denote the size of the vector.

Important Note: Since a vector is just a type of matrix, the rules,
notation, and syntax for matrices in MATLAB also apply to vectors.

You can see an example of a vector containing numbers in Figure 5. Do not con-
fuse programming (MATLAB) vectors with a general Euclidean vector, which
has a magnitude and direction (e.g., 3 meters at 45 degrees). Also note that
vectors and matrices are types of arrays. Arrays are the most general type of
ordered data in programming.

CONTENTS

Figure 3: Generalized example of a
row vector (size: 1 × 𝑛).

Figure4: Generalized example of a
column vector (size: 𝑛 × 1).

[4 10 99]

Figure 5: A vector with 1 row and 3 columns (size: 3×1).

How do I define a vector or a matrix in MAT-
LAB?

Matrices that contain all their elements in one row or all their elements in one
column are called row and column vectors, respectively. If a matrix has more
than one row and one column, it is a multidimensional matrix (the smallest size
of a multidimensional matrix is 2×2).

When defining a matrix in MATLAB, we must differentiate between rows and
columns. To separate individual row elements, at least one space is required.
To separate each matrix row, a semicolon is required. The nomenclature is the
same for a matrix of any size.

The steps to input a matrix of any size are:

1. Define the matrix using a legal named variable.

2. Define the matrix by using a set of brackets [].

CONTENTS

3. Inside the brackets, matrix rows are input with each element separated by
at least one space.

4. Use a semicolon (;) to denote that the row input is complete.

5. Now, repeat steps 3 and 4, until all the rows are entered.

An example of how to enter a matrix is given next in Example 1.

Example 1

Input the following two matrices ([A] and [B]) into a MATLAB m-file.

[A] = [1 2 6
2 65 1] and [B] = ⎡⎢

⎣

2 3
2 1
9 3

⎤⎥
⎦

Solution

CONTENTS

You can see the steps for inputting a matrix being followed in Figure 1. Note
the differences between inputting a scalar and a matrix.

What are some basic functions and commands for
matrix manipulation?

MATLAB has implemented many built-in functions that make basic matrix
manipulations simpler and these are shown in Table 1.

Table 1: Several commonly used matrix commands and operators. The input
to the listed commands is the matrix [A] and [B] (where applicable).

Task Syntax Explanation
Isolating a
matrix element

A(r#,c#) Calls a matrix element by a
row # and column #

Maximum
dimension of a
matrix/vector

length(A) Outputs the largest
dimension of a
vector/matrix

Size of a matrix size(A) Has two outputs: the
number of rows and the
number of columns of a
matrix.

Last element of a
dimension

A(end,1) References/indexes the last
element in that dimension.

Matrix
referencing
shorthand

A(:,1) Yields the entire first
column. The “:” references
“all of that dimension”.

Matrix
referencing
shorthand

A(1:20,1) Yields rows 1 through 20 in
column 1 of matrix [A].

CONTENTS

Task Syntax Explanation
Develop a zero
matrix

zeros(m,n) Outputs a matrix of size
m × n with all zeros
elements

Create an
identity matrix

eye(n) Outputs an identity matrix
of size n × n

Develop a ones
matrix

ones(m,n) Outputs a matrix of size
m × n with all elements
equal to one

Create an
arbitrary square
matrix

magic(n) Outputs an arbitrary square
matrix of size n × n

Example 2

Create an arbitrary matrix, and find its dimensions. Then create a vector from
a subset of this matrix and calculate the number of elements in it.

Solution

CONTENTS

Example 3

Create an arbitrary matrix [𝐴]. Then create two vectors, vec1 and vec2, from
subsets of that matrix.

The vector, vec1, should contain the first three elements of the first row of the
matrix [𝐴]. The vector, vec2, should contain the last three elements of the first
row of the matrix [𝐴].

CONTENTS

Solution

CONTENTS

How can I reference strings as vectors?

In Lesson 2.2, we discussed characters and strings. In MATLAB and many other
programming languages, strings (or arrays) of characters, can be referenced the
same way as a vector. See Example 4 for usage. This can be especially useful if
we only want to look at a particular part of a string/text.

Example 4

You are given the sentence, This is an example string. Assign the first ten
elements (characters) and the last element (character) in variables. Find the
number of characters in the sentence (string/array).

Solution

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example
Usage

Isolating a matrix
element

A() A(r#,c#)

Maximum dimension of
a matrix/vector

length() length(A)

Size of a matrix size() size(A)
Last element of a
dimension

end A(end,1)

Matrix referencing
shorthand (whole
dimension)

: A(:,1)

Matrix referencing
shorthand (partial
dimension)

a:b A(1:20,1)

Develop a zero matrix zeros() zeros(m,n)

CONTENTS

Create an identity
matrix

eye() eye(n)

Develop a ones matrix ones() ones(m,n)
Create an arbitrary
square matrix

magic() magic(n)

Multiple Choice Quiz

(1). The MATLAB function that outputs the number of rows and columns of a
matrix is

(a) dimensions()

(b) mdim()

(c) msize()

(d) size()

(2). When inputting a matrix, each new row is separated by a

(a) :

(b) ;

(c) |

(d) ,

(3). What is the output of the last line?

(a) -6

(b) 3

(c) 4

(d) 12

(4). Given a matrix,[A], which of the following will return the element from the
second row and third column?

CONTENTS

(a) A(3)(2)

(b) A(3,2)

(c) A(2)(3)

(d) A(2,3)

(5). What is the Command Window output of the following program?

(a) ans = 64

(b) ans = 48

(c) ans = 40

(d) ans = 30

Problem Set

(1). Create a row and column vector each with five elements and store each of
them in a variable. Then find the size and length of each vector.

(2). Create a 3×4 matrix and store it in a variable. Find its size and display the
number of rows and the number of columns with a single fprintf() function.

(3). Create a 4 × 4 matrix and store it in a variable. Then find and display the
product of the elements at the fourth row, second column and the second row,
third column.

(4). Create an n × n matrix and store it in a variable. Then create a column
vector from the first column of that matrix and store it in a variable. Remember
not to hardcode! Your solution should work for any size matrix.

(5). Create an m × n matrix, where m > n > 3 and store it in a variable. Then
create a row vector from the last three elements of the first row of the matrix.

CONTENTS

Module 2: BASIC
PROGRAMMING
FUNDAMENTALS

Lesson 2.7 – How to Debug Code

Learning Objectives

1) identify problems in your code,

2) interpret errors and warnings,

3) debug an m-file.

Generally, there are two problems you might have with your code: 1) it has an
error and will not run, or 2) it does not do what you expect it to do. We will
address the first type of problem in this lesson. For the second problem, you
will have to complete the rest of the course!

What is an error?

There are two general types of messages MATLAB may return to alert you to a
problem (or potential problem) it sees in your code. These are called error and
warning messages, and MATLAB will display them in the Command Window
(see Figure 1).

https://www.mathworks.com/help/compiler_sdk/cxx/error-and-warning-messages.html#responsive_offcanvas
https://www.mathworks.com/help/compiler_sdk/cxx/error-and-warning-messages.html#responsive_offcanvas

CONTENTS

Figure 1: An example of an error in MATLAB where it has clearly identified
the problem.

Error messages either will not let your program run, or will stop it before it
finishes running: it depends on the error. Error messages can identify errors in
syntax, problems with the way MATLAB functions are called, etc.

Figure 1 shows an example of an error in MATLAB. As you can see, our program
did not execute any lines of code. We know this because the first line of code
is written correctly, but it did not display any text to the Command Window.
Also, note that MATLAB displays the error message in the Command Window,
and tells us exactly what is wrong.

What is a warning?

A warning is for MATLAB to tell you something about your program without
stopping it from running. One example of this is mathematical alerts where
MATLAB has checked something behind the scenes and is telling you to be
careful (see Figure 2). This is done by the programmers who wrote that MAT-
LAB function to alert you to a specific mathematical problem rather than a
programming one. Another example is an outdated or “depreciated” code warn-
ing. Computer languages decide to remove functions sometimes and will display
“depreciation warnings” that function/syntax will not be supported in future
releases of the software (MATLAB in this case).

CONTENTS

Figure 2: An example of a warning in MATLAB where it has identified a
potential mathematical problem.

How can I solve the problem with my code?

One should use a systematic approach to fix, or “debug” a programming prob-
lem. The following sub-sections review a general step by step process to identify
why your code is broken. There are a variety of errors that can occur in MAT-
LAB; however, the following sections will give you a general way of approach to
tackle most errors that you encounter.

Most of the time, if you make an error in the syntax of your program, MATLAB
will return an error. Typically, error messages contain at least two types of
helpful information. As you can see in Figure 1, it provides a line reference
where it believes the problem is occurring (this is often the correct line, but
not always). The error message also usually contains some helpful information
about the problem, and this information has gotten more and more detailed in
newer versions of MATLAB.

Important Note: Always read the error message in full!

CONTENTS

Figure 3: Example of how to extract information from an error message.

Once you have gleaned all the information from an error message, then you can
move on to further identify and/or fix the issue. There is no exact procedure to
follow when debugging, but here are some general steps to try and remember:

1. Check for common causes of errors (often identified in the error message)

a. Line breaks (hitting Enter/Return) in the middle of a function
b. Misspelling (case sensitive) of any used command and function

i. Track usage of variable names in program expressions
ii. Ensure that no single variable has more than one name

2. Check code syntax

a. Read the documentation relevant to the commands/functions you are
using

b. Check function input order placement (Syntax)
i. Ensure that each function has the correct number and order of

inputs
ii. Ensure each input is of the correct data type (integer, string,

vector, etc.)

3. Think about what is happening in the program!

a. Unsuppress variables to see what values they are taking on.
b. To quickly see all the uses of a variable name in an m-file, click

anywhere in the variable name and wait a moment. See Figure 4.
c. It can help to hand-write out the steps the computer will go through.

As a rule of thumb, if you do not know how to do something on paper,
you do not know how to do it in your program.

d. Check program flowchart, and/or I/O diagram, and/or pseudocode
(See Lessons 6.1 and 6.2)

https://www.mathworks.com/help/matlab/index.html

CONTENTS

i. This is more helpful when the program does not have errors and
still does not return the expected output.

4. Check custom, user-defined functions (See Lesson 7.1)

a. Repeat Steps 1 – 8 for any user-defined functions
b. If there is an error originating from a user-defined function, you can

see that in the error message. The m-file where the error occurred is
listed in the error message (see Figure 3).

Figure 4 shows an example of the instant find feature of MATLAB. This allows
you to click on any variable and have all the instances marked and highlighted.
In this case, the variable myVector has been clicked on at line 19 (although you
can click on any instance of the variable), and MATLAB has highlighted the
other two instances in blue (seen in Figure 4 as grey) on lines 21 and 32.

Figure 4: m-file showing the find feature.

One can see myVector highlighted in three different places in Figure 4. If your
program is longer, you can see that there are grey dashes on the right side of
the Editor that show the relative location within the m-file. This makes it a lot
easier and faster to check all the different usages of a variable name.

CONTENTS

Can I pause my program part of the way through?

There are two simple ways to pause your program partway through a run. These
are breakpoints and the “Pause” button in the Editor tab (Figure 5).

Figure 5: Showing the “Pause” button in the Editor tab.

The “Pause” button, once clicked, simply pauses the program wherever it is
currently in the execution of the m-file. For example, if Pause is clicked as
MATLAB executes line 43, it will pause execution at line 43. If execution is
resumed by the programmer (Figure 6), the m-file will continue from line 43.

Breakpoints are a great tool for quickly debugging a program. They function
similar to the way the Pause button works except the location where they pause
the program execution is precise. Typically, you should favor breakpoints over
the Pause button due to the precision of breakpoints.

Figure 7 shows several breakpoints placed in an m-file. Notice the breakpoint
circles on lines 17 and 27. Although we used two breakpoints in Figure 7, you
can use as many as you like. Placing a breakpoint is done by using the mouse
cursor to click in the space to the right of the m-file line number. A breakpoint
is denoted with a circle (filled with grey or red color) and can be removed by
clicking inside the circle.

When the program execution has been paused, it can be resumed or stopped.
The user interface (UI) buttons for this in MATLAB are shown in Figure 6. If
“Continue” is selected, the program (m-file) continues as it normally would.

Figure 6: Run options when the program has paused.

When an m-file is first executed (use normal execution; i.e., “Run”) with break-
points, only the segment of code prior to the first breakpoint will run. The m-file
will then sequentially execute each segment of code to the next breakpoint for
each single execution. After each execution, a green arrow will appear that
points to the next executable line of code. Figure 7 shows the indicator arrow

CONTENTS

(green in MATLAB) and a program m-file which has been partially executed
using breakpoints.

Figure 7: Breakpoints placed on an m-file.

CONTENTS

Figure 8: CommandWindow output for code in Figure 6 at the first breakpoint
(line 17).

Clicking Run on the m-file shown in Figure 7 will execute lines 1 – 16. It
will pause before executing line 17 (and beyond) because we have placed a
breakpoint there. Clicking Continue will execute the code from line 17-26. It
will pause before line 27 because we have placed a breakpoint there. Finally,
clicking Continue the last time will run the rest of the m-file as there are no
more breakpoints. Take note of the outputs shown in Figure 8. These are the
outputs before the first breakpoint.

What if I cannot find the exact place of the error?

If you cannot pinpoint the error from an error message or some other information
you have gathered, you should try to isolate the problem through other methods.
Commenting (%) the part of the code that is nor relevant to the error is a good
way to track down the source of the error. You can also make smart use of
breakpoints. Remember, MATLAB reads lines of code sequentially, so you
should start at the top and work down or vice versa. Unsuppressing (removing
the semicolon “;” at the end of a line of code) shows the value of the variable
in the Command Window.

Multiple Choice Quiz

(1). An error given by a MATLAB program means

(a) the program will continue running, but something is wrong

CONTENTS

(b) something is wrong, and the program will not continue to run

(c) MATLAB crashed and you need to re-run the program

(d) you must manually save the program before running it

(2). A good practice while debugging a program is

(a) unsuppressing a Command Window output

(b) suppressing a Command Window output

(c) removing comments

(d) removing fprintf() statements

(3). The “Pause” button, when pressed at a given line, does the following

(a) resumes the program from that line

(b) pauses the program at that line

(c) stops the whole program

(d) restarts the program

(4). The number of breakpoints you can use in a program is

(a) one

(b) two

(c) one for each line of code

(d) ten

(5). A warning given by a MATLAB program implies

(a) the program has an error

(b) the program has potential issues that need to be addressed

(c) the end-user of the program has little to worry about the output of the
program

(d) the program will not run

CONTENTS

Problem Set

Note that you should not expect an error for every “problem”. Errors are returned
by MATLAB when there is a problem with syntax, but not necessarily when there
is a problem with your solution in general.

(1). Find the problem(s) in the following code and fix them. Then write one
paragraph describing the process you used to debug the code. How did you
identify the problem(s) and find the solution(s)?

(2). Find the problem(s) in the following code and fix them. Then write one
paragraph describing what the problem(s) were. Reference the documentation
as well.

(3). Find the problem(s) in the following code and fix them. Then write one
paragraph describing what the problem(s) were. Reference the documentation
as well.

(4). Find the problem(s) in the following code and fix them. Then write one
paragraph describing what the problem(s) were. Reference the documentation
as well.

CONTENTS

(5). Find the problem(s) in the following code and fix them. Then write one
paragraph describing what the problem(s) were. Reference the documentation
as well.

CONTENTS

Module 3: PLOTTING

Lesson 3.1 – Plots and Figures

Learning Objectives

1) display two-dimensional plots,

2) display several plots on one graph,

3) display logarithmic plots.

How can I visualize (plot) data in MATLAB?

Making a plot is vital for analyzing and understanding data as well as relaying
information to your colleagues. Plots are commonly used in books, reports, and
many other engineering documents. This lesson will cover the basic concepts of
developing plots using MATLAB.

Ask yourself, “What information do I want to plot?” MATLAB has many
methods for developing a plot, but we will focus on the plotting of lines in this
lesson. The plot will require two vectors. One of these vectors is the horizontal
(abscissa) axis values and the other vector is for the vertical (ordinate) axis
values.

How do I plot data pairs (points) in MATLAB?

Function: Plotting sets of 2D data pairs.
plot()

CONTENTS

Function Inputs:
x data points (enter as vector), x
y data points (enter as vector), y
Example Usage:
plot(x,y)

Once the m-file has been run, a new window will appear that contains the data
points on a plot. This figure will be titled as Figure 1, and that is your plot.

Example 1

Using plotting features of MATLAB, plot the following (x, y) data pairs on a
linear graph. The data pairs to plot are: (0,0), (1,1), (2,4), (3,9), (4,16).
Solution

Figure 1: The figure output by the code in Example 1.

CONTENTS

As discussed in Lesson 2.6, when inputting data points make sure you use brack-
ets to establish a vector and separate each data point with a space. Note that
we have turned the data pairs into two vectors. The names of these two vectors
do not have to be x and y as they can be named as any legal variable names.
Also, note that the plot simply joins the given data points with straight lines.

How do I plot a function in MATLAB?

When MATLAB is plotting a function, the procedure is basically doing the
same thing as when plotting discrete points as shown in Example 1. The only
difference is in the creation of the points that we want to plot. For a continuous
function, we use the values from an x vector to build the y vector by plugging
individual values of x into the desired function. When developing the domain
of x values, the interval is the space between each point. The smaller the
interval, the resolution of the plot and the computational time to create the
plot both increase.

Example 2

Plot the given function using MATLAB plotting functions. To generate the y
values from the function, use 𝑥 values from 0 to 4 with an interval between each
point of 0.1.

Function: y = 2x + 1

Solution

CONTENTS

Figure 2: The figure output by the code in Example 2.

When generating the x vector, you should take note at the notation used (x1
(first data point): interval: xn (last data point)). Having a colon (:) to separate
the starting point, the interval, and the final point is not just used when plotting,
it is also used when generating vectors in MATLAB. You can see this in Example
1, and we will use this notation again soon.

What is the difference between a figure and a
plot?

A “figure” is the window containing a “plot”. A plot is a specific graphic that
is displayed in the figure. You can see they are called separately in Example 1
where we first open a figure and then print a plot to it. Therefore, a figure can
exist without a plot, but not vice versa (see Figure 3).

https://www.mathworks.com/help/matlab/ref/figure.html

CONTENTS

Figure 3: A blank MATLAB figure.

How can I enter nonlinear functions for plotting?

Many nonlinear functions that you want to plot will require the use of an array
operator. An array operator simply means you must use the dot (.) character
before the mathematical operator (e.g., A.*B). We will deliberately shorten our
explanation of this operator for now. Just know that it comes from linear algebra
rules, which we will cover in detail in Lesson 4.6.

To makes things simpler for this lesson, we provide specific guidelines for when
to use an array operator in this lesson. Although the following guidelines are not
true in general, they are true for the examples and exercises seen in this lesson.
They are also generally true when plotting, although you should carefully review
the detailed explanations in Lesson 4.6.

Use an array operator when:

1. two vectors are multiplied together. Example: vecA.*vecB

2. a vector is in the denominator. Example: 2./vec

3. a vector is raised to a power. Example: vec.^2

Do not use an array operator when:

CONTENTS

1. a vector is an input for trig or log functions. Example: sin(vec)

2. a vector is multiplied by a scalar. Example: 2*vec

What are some possible errors with plotting?

While plotting, the following error message may pop up in the Command Win-
dow:
Error using plot
Vectors must be the same length.

This error occurs because MATLAB needs to have the same number of elements
in both the x and y vectors to develop a plot. This is also true of all 2D plots in
general. You can use the length() function to quickly check the lengths of the
vectors you are trying to plot.

Another common error:
Error using *
Inner matrix dimensions must agree.

The cause of this error often lies in not using the array (.) operator when plotting
nonlinear functions. Make sure you follow the guidelines outlined above.

You may also have this error appear:
Undefined function or variable...

If this message appears, most likely you have not been consistent in your naming
of your variables. Make sure that your vector names correspond to the plot()
function inputs; remember that MATLAB syntax (functions and variables) is
case sensitive.

How do I show multiple data sets on the same
plot?

Often, you will want to put more than one plot on the same figure. The com-
mand hold on can be used when you want to make multiple plots on the same
figure. It should always be placed right after the first plotting function. In
Example 3, you can see two plot() functions are used along with the hold on.
Because the plot() function is used twice, MATLAB would “normally” default
to generating two figures; however, using the hold command tells MATLAB to
place these two sets of data on the same figure. The hold off is used when

CONTENTS

you have completed all the plotting calls for that figure. You can place as many
data sets on the same figure as you want. Just make a new plot() function for
each new data set. Finally, note that hold can be used with most other plotting
functions: not just plot().

Example 3

Plot the given data pairs and the function on the same plot using MATLAB
plotting functions. To generate the y values from the function, use 𝑥 values
from 0 to 4 with an interval between each point of 0.1.

Data Pairs: (0, 0), (1, 1), (2, 4), (3, 9), (4, 16)
Function: y = 2x + 1

Solution

CONTENTS

Figure 4: The figure output by the code in Example 3.

What are some other types of plots that MAT-
LAB can generate?

An entire course can be devoted to making plots in MATLAB. Many different
parameters can be controlled, animated, and viewed in different dimensions.
Also, contours can be added, and labels and highlights can be placed in the
graph. In this section, we cover one area of this extensive topic: the log-log and
semi-log plots.

The loglog plot has a log-scale on both the x- and y-axis.

Function: Creating a log-log plot
loglog()

Function Inputs:
Domain of x values (vector), x Values of y at x values generated using the
function, y

Example Usage:
loglog(x,y)

A semi-log plot is different from the log-log plot because it has a log-scale on
only on one of its axes; its x or y axis.

Function: Creating a semi-log plot
semilogx() or semilogy()

CONTENTS

Function Inputs:
Domain of x values (vector), x
Values of y at x values generated using a function of x, y

Example Usage:
semilogx(x,y) or semilogy(x,y)

Example 4

Develop a linear-log plot with the logarithmic axis being the horizontal axis.
The function to plot is 𝑦 = 𝑙𝑜𝑔(𝑥). Note the MATLAB function for this is
log(). Use the function provided and a range of independent values going from
1 to 3000 with an interval of 0.1. Be sure to suppress the vertical and horizontal
vectors as they contain thousands of elements.

Solution

One can see that the semilogx() function is used to create a log-scale on the
horizontal or 𝑥 axis of the figure.

CONTENTS

Figure 5: The figure output by the code in Example 4. Notice the x-axis is
logarithmic.

How do I plot on more than one figure in the
same m-file?

You have probably noticed that if you try to plot more than one figure us-
ing the same m-file, only the last figure appears; that is, MATLAB overwrites
the preceding figures. The solution to this problem is simple: use the figure
command.

To number a figure, place the command prior to the plot function. For example,
to plot two different graphs, one would type,

figure
plot(x,y)
…
figure
plot(xp,yp)

MATLAB will open a new figure window each time the figure command is
executed. To display different figures in one window, the function subplot()
is used (This function is not discussed in the book. You can search MATLAB
help for subplot() to learn more about this function).

CONTENTS

What is the close command?

The close command allows one to close one or more open MATLAB windows.
The close all command will close all open figure windows. This will close all
MATLAB figure windows that are open when it executes. If one has numbered
the figures in their m-file, MATLAB will continue to add to the figures during
each run of the m-file. This is similar to how the Command Window will
continue to display the output(s) from all previous runs if the clc command is
not used. This can become very cumbersome, so it is usually a good idea to
place this command at the beginning of your program (following the clc and
clear commands). Another option to clear figures is the clf command, which
stands for clear all figures. The difference here is that it will clear the figure
windows, but it will not close the windows.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example
Usage

Open a new blank
MATLAB figure window

figure figure

Plot 2D data points on
linear axes

plot() plot(x,y)

Plot 2D data points on
logarithmic axes

loglog() loglog(x,y)

Plot 2D data points
w/logarithmic x-axis

semilogx() semilogx(x,y)

Plot 2D data points
w/logarithmic y-axis

semilogy() semilogy(x,y)

Close all open MATLAB
figure windows

close close all

Multiple Choice Quiz

(1). The MATLAB function to make a plot is

(a) figure()

(b) fig()

(c) plot()

CONTENTS

(d) pplot()

(2). The standard input form for the MATLAB function semilogx() for plot-
ting y vs. x data is

(a) semilogx(log(x),y)

(b) semilogx(x,y)

(c) semilogx(log(x),log(y))

(d) semilogx(x,log(y))

(3). The interval between the points in the array xx = 3:0.1:20 is

(a) 0.1

(b) 3

(c) 10

(d) 20

(4). To plot y=2x from x=3 to 7, the code would be

(a) x = 3:0.1:7;
y = 2*x;
plot(x,y)

(b) x = 3:0.1:7;
y = 2*x;
plot(y,x)

(c) x = 7:0.1:3;
y = x*x;
plot(x,y)

(d) x = 7:-0.1:3;
y = 2*x;
plot(y,x)

(5). The vector xp = 3:0.5:9 yields ________ elements?

(a) 6

(b) 7

(c) 12

(d) 13

CONTENTS

Problem Set

(1). For the duration of one year, the total sales profit for a turbine company
is recorded. At the end of each month, the total profit (in millions of dollars)
for that month is calculated and stored in MATLAB as a vector, profit.

profit = [0.3 0.45 2.1 1.4 1.12 3.2 2.3 1.23 0.76 0.97 1.2 0.78]

Using MATLAB graphing features, plot the profit vs. time (months). Also,
using the fprintf() function, output the total profit (in millions) for the year.

(2). Plot the given discrete data set (as green points) and function (as a blue
dash-dot line) on the same plot. Use the minimum and maximum of the x values
in the discrete data set as the plotted domain of the function with an interval
of 0.2.

Data points: (2.2, 6.4), (2.8, 11), (3.0, 13), (5.0, 35), (6.1, 51), (8.0, 83)
Function: y = 5x − 3

(3). A rocket is horizontally strapped to the top of a sled and ignited. The
position of this contraption is given as a function of time (sec) by

𝑠(𝑡) = 3
50𝑡3 + 7

30𝑡2 − 5𝑡 (ft)

Plot the position of the sled in MATLAB from 0 to 60 sec. Remember to follow
the guidelines given in this lesson for raising a vector to a power when plotting.

(4). The kinetic energy of a system can be modeled as

KE = 1
2 𝑚 ∣𝑣2∣,

where
KE is the kinetic energy (𝑁 ⋅ 𝑚)
m is the system mass (𝑘𝑔)
v is the velocity (𝑚

𝑠)

Plot the kinetic energy of a system vs. velocity in MATLAB. Use values of mass
as 2 kg and take the range of velocity as 0 to 30 m/s. Remember to follow the
guidelines given in this lesson for raising a vector to a power when plotting.

(5). The velocity of a rocket is given by,

𝑣(𝑡) = 2000 ln [14×104
14×104−2100𝑡] − 9.8𝑡, 0 ≤ 𝑡 ≤ 30

CONTENTS

where v is given in m/s and t is given in seconds. Plot the velocity of the
rocket as a function of time from 0 to 30 seconds. Use a loglog plot. The
function for finding a natural log is log() (see Lesson 4.1 or use MATLAB
documentation). Remember to follow the guidelines given in this lesson for a
vector in the denominator when plotting.

CONTENTS

Module 3: PLOTTING

Lesson 3.2 – Plot Formatting

Learning Objectives

1) add axis labels to MATLAB plots,

2) add a legend to MATLAB plots,

3) add a title to MATLAB plots,

4) add special characters to text in MATLAB plots,

5) improve the overall look of MATLAB plots.

How can my MATLAB graph look nicer?

As you can tell from Lesson 3.1, developing graphs can prove to be important
for interpreting data. The ability to make those graphs easier to read and
aesthetically pleasing is equally important. In this lesson, you will learn several
techniques to make a MATLAB plot more readable and easier to follow. This
section will cover the functions and commands on how to make a legend, title,
axis labels, and place a grid onto a plot. Also covered are the use of special
fonts and characters and how to change the axis markings.

CONTENTS

What are some terms I should know for plots?

Figure 1 shows the MATLAB naming convention for plotting. Most of the
nomenclature is common sense and similar to other software, but it is important
to know to understand how to change the different properties.

In this lesson, we will cover the two most commonly used groups of properties
that define how plotted graphics look in MATLAB. Those are as follows:

• Line Properties define chart line appearance and behavior: for example,
the line style and thickness.

• Axis Properties define axes appearance and behavior: for example, axis
limits, title, and legend.

The properties are not mandatory as you could see from the last lesson. In
other words, you could make a plot without MATLAB requiring you to have a
title, line width, axis labels, etc.

Figure 1: A MATLAB plot with common plot properties annotated.

https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
https://www.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html

CONTENTS

How can I change the color and style of lines and
markers on a plot?

MATLAB provides many different options to change how your plots look. You
can see some of the common options in Tables 1, 2, and 3 below. Example 1
uses some of these options to customize how a figure appears.

Table 1: Various marker plotting styles.

Desired Style Syntax Example Usage
Circle 'o' plot(x,y,'o')
Square 's' plot(x,y,'s')
Asterisk '*' plot(x,y,'*')
Cross '+' plot(x,y,'+')
Small point '.' plot(x,y,'.')
Diamond 'd' plot(x,y,'d')
Five-pointed star 'p' plot(x,y,'p')

Table 2 shows different line styles used to represent the function in the generated
plot. To change the color of a line or data point, use the parameters given in
Table 3. Note that these color and line style options can be used in the same
parameter input to the plot() function. For example, we can instruct MATLAB
to make the plot a dotted red line with plot(x,y,'r:').

Table 2: Various line plotting styles.

Desired Line
Style Syntax Example Usage
solid line (default) '-' plot(x,y,'-')
dashed line '–' plot(x,y,'–')
dotted line ':' plot(x,y,':')
dash-dot line '-.' plot(x,y,'-.')

Table 3: Various color options for data points and lines.

Desired Color Syntax Example Usage
blue (default) 'b' plot(x,y,'b')
red 'r' plot(x,y,'r')
black 'k' plot(x,y,'k')
yellow 'y' plot(x,y,'y')
magenta 'm' plot(x,y,'m')
green 'g' plot(x,y,'g')

CONTENTS

Desired Color Syntax Example Usage
cyan 'c' plot(x,y,'c')

How can I make the function and points on the
graph look nicer?

There are many ways to display the desired function(s) and/or data points on a
graph. To name a few, modifications include the change of the following - color,
size, shape, line type, and outline of both the points and function. Typing doc
plot in the Command Window will yield tables of information and codes that
can be used to modify your graph.

Line Parameter: Line width of a curve (function)
'LineWidth'

Parameter Value:
Any positive integer – the larger the number the thicker the line width

Example Usage:
plot(x,y,'LineWidth',2) (read more about code placement below)

Line Parameter: Size of a data point symbol
'MarkerSize'

Parameter Value:
Any positive integer – the larger the number the larger the marker size

Example Usage:
plot(x,y,'MarkerSize',6) (read more about code placement below)

Both the LineWidth and MarkerSize parameters must be used in conjunction
with the plot() function as they are parameters of this function; therefore,
they must go inside the plot() function. To illustrate this, Example 1 shows
both the m-file and generated figure using these parameters.

Example 1

Plot the function 𝑦 = 2.1𝑥 + 4.4 and the following data set on the same plot.
Data pairs to plot are: (0, 4.12), (2, 8.6), (4, 11.5), (5, 15.3), (7, 18.0), (8.5,
21.25). Plot the function within the domain of 0 to 10 with an interval between
the points of 0.1. Use blue points (markers) for the data set with a specified
marker size of 6 and a red dotted line for the function with a line width of 2.

CONTENTS

Include a legend, title, and axis labels on the plot. Use bold font for the title
and italicize the axis labels.

Solution

Figure 2: The figure output by the code in Example 1.

CONTENTS

How can I put a title and axis labels on my plot?

Whenever you are making a plot, you should always use a title and axis labels.
Even if it is the world’s simplest plot, these things are important. MATLAB
contains several preprogrammed functions that allow the user to add a figure
title and axis labels to a graph.

Example 2 shows an m-file with the corresponding figure using the
title(),xlabel(), and ylabel() functions.

How can I add a legend to my plot?

The function to add a legend to a plot is legend(). In the m-file, the legend()
function must be placed after the last plotting call. The order in which the
descriptions should appear in the legend is the same as the order in which the
functions/points are plotted. When making a legend, double-check that the de-
scriptions match with what MATLAB is plotting. MATLAB will automatically
place the line style of the function/point with the description provided by the
user for each object in the legend.

Example 2 shows an example m-file of how to use a legend in a MATLAB-
generated figure. Notice the use of the 'location' parameter to manually set
the location of the legend on the plot. The parameter ‘NW’ (northwest), which
must directly follow it, specifies where we want the legend to by on our plot.
The locations are given as cardinal directions: north, south, east, west, etc.

Note in the m-file in Example 2, the placement of the LineWidth and
MarkerSize parameters inside the plot() function. Also, note the placement
of the title(), xlabel(), ylabel(), and legend() functions, which are after
the plot() function in the m-file.

How can I add a grid to my graph?

Using a grid in a figure is a helpful tool to make a graph more readable. However,
using a grid is not always useful. In some cases, a grid can be counter-productive
because the grid lines can crowd a plot. Placing a grid is very similar to using
a title or axis label, just type grid on. Just like hold off, you can also use
grid off.

CONTENTS

Example 2

Plot the function 𝑦 = 2.1𝑥 + 4.4 and the following data set on the same plot.
Data pairs to plot are: (0, 4.12), (2, 8.6), (4, 11.5), (5, 15.3), (7, 18.0), (8.5,
21.25). Plot the function in the domain of 0 to 10 with an interval between the
points of 0.1. Use blue points (markers) for the data set with a specified marker
size of 6 and a red dotted line for the function with a line width of 2. Include
a legend, title, and axis labels on the plot. Make the title in bold font and axis
labels in italics.

Solution

Note: This is an extension of the solution given in Example 1.

CONTENTS

Figure 3: The figure output by the code in Example 2.

Similar to the title or axis label functions, the grid command needs to be placed
after the plot() function in m-file. If hold on is used, the grid command
should be directly after it as shown in Example 2.

How can I add special characters in my axis labels
and title?

It may be necessary to add superscripts and subscripts to the item description(s)
to the plot title, legend and/or labels. The syntax for superscripts and subscripts
are placed where needed in the title(), xlabel(), ylabel(), and legend()
functions. What is to be placed in the desired superscript or subscript must
be inside braces {}, and the script character is placed before the braces. The
character _ is used for subscripts and the character ^ is used for superscripts.
Similarly, one may use similar script statements as shown below for the axis
labels, legends, etc. For example, to display, 𝑦1 = 𝑥3 in the title of a figure, one
would type:

plot(x,y)
title('y_{1}= x^{3}')

The use of Greek letters or bold, italic and regular font may also be useful when
making a graph. These can be added using a backslash followed by the desired
font variation. To name a few, add bold font by using \bf, italic font by using
\it, and regular font by using \rm followed by the desired text. To display
Greek letters, one can use \greek_letter (see Table 4 and Example 3).

CONTENTS

Table 4: Some of the special characters to be used with figures. The symbols
can be used with any of the functions given as examples and more.

Symbol Syntax Example Usage
𝛼 \alpha title('\alpha')
𝜔 \theta xlabel('\theta')
𝜋 \pi ylabel('\pi')
𝜎 \sigma legend('\sigma')
𝜏 \tau xlabel('\tau')
± \pm ylabel('\pm')
÷ \div legend('\div')

For example, to place, c = 2∗�∗r in the title of a figure (notice the bold font),
one would type title('\bfc = 2*\pi*r'). For a more complete list of special
characters that can be used with your figures, conduct a MATLAB help search
(keyword: Text Properties). Example 2 shows the use of a few special font
styles, including bold font and subscripts in a plot.

How can I change axis limits and tick labels?

MATLAB makes it easy to adjust the limits of your axes to fit your data. The
xlim() function adjusts the displayed domain of the horizontal axis, while the
ylim() function adjusts the displayed range of the vertical axis.

For some data, such as the sinusoidal wave shown in Example 3, it can be useful
to change the tick increments. xticks() and yticks() redefine the tick incre-
ment. That is, how far apart the ticks are on the axis. The corresponding tick
labels can be changed with the xticklabels() and yticklabels() functions.
These will allow you to change the tick label to any custom text compatible
with MATLAB.

Example 3

Plot the function 𝑓(𝑡) = 0.3 sin(𝑡) for time values of 0 to 2𝜋 in steps of 0.2. Set
the x-axis ticks and tick labels to be from 0 to 2𝜋 in steps of 𝜋/2. Be sure to
use the symbol (𝜋) rather than just writing “pi”.

Solution

https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/ylim.html
https://www.mathworks.com/help/matlab/creating_plots/change-tick-marks-and-tick-labels-of-graph-1.html
https://www.mathworks.com/help/matlab/ref/yticks.html
https://www.mathworks.com/help/matlab/ref/xticklabels.html
https://www.mathworks.com/help/matlab/ref/yticklabels.html

CONTENTS

Figure 4: Plot with custom axis limits and axis labels on the horizontal axis
(output for Example 3).

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Add a title to plot title() title('Your title')
Add x-axis label to plot xlabel() xlabel('Your x

label')
Add y-axis label to plot ylabel() ylabel('Your y

label')
Place a legend on the plot legend() legend('plot1','plot2')
Place a grid on the plot grid grid on
Set custom line width for a data
set

LineWidth plot(x,y,'LineWidth',5)

Set a custom marker size for a
data set

MarkerSize plot(x,y,'MarkerSize',5)

Set custom x limit for plot xlim() xlim([lowerX,upperX])
Set custom y limit for plot ylim() ylim([lowerY,upperY])
Set custom x ticks for plot xticks() xticks([minTick,maxTick])
Set custom y ticks for plot yticks() yticks([minTick,maxTick])
Set custom x tick labels for plot xticklabels() xticklabels({'x1','x2'})
Set custom y tick labels for plot yticklabels() yticklabels({'y1','y2'})

Multiple Choice Quiz

(1). The function to add a title to a plot is

(a) ptitle()

(b) t()

(c) title()

(d) label()

(2). The MarkerSize parameter

(a) adjusts the overall size of the figure font.

(b) adjusts the size of plotted points.

(c) changes the aspect ratio of the graph size.

(d) changes the thickness of plotted lines.

CONTENTS

(3). To add a subscript, use the character(s)

(a) n{}

(b) n()

(c) _{}

(d) _()

(4). Which of the following will show the plot title in italics?

(a) title('\it This is a plot title.')

(b) title('it{This is a plot title.}')

(c) title('it(This is a plot title.)')

(d) title('This is a plot title.\it')

(5). Two sets of data points and a function, coded in the order, data_set_1,
data_set_2, and function_1, are plotted. The correct code sequence to create
the appropriate legend is

(a) legend('data set 1','data set 2','function 1')

(b) legend('function 1','data set 2','data set 1')

(c) legend(data set 1, data set 2, function 1)

(d) Code sequence does not matter.

Problem Set

(1). A rocket is horizontally strapped to the top of a sled and ignited. The
position of this contraption is given as a function of time t (sec) by

𝑠(𝑡) = 3
50𝑡3 + 7

30𝑡2 − 5𝑡 (ft).

Plot the position of the sled in MATLAB from 0 to 60 seconds. Add a title
(bold font) and axis labels (italic font) to the plot. Remember to follow the
guidelines given in Lesson 3.1 for raising a vector to a power when plotting.

(2). Plot the lift and drag forces exerted on an airfoil as a function of velocity.
Use velocity (v) values from 0 to 45 m/s on a log-linear plot (log-scale on the
y-axis). The working fluid density (𝜌) is 1.423 kg/m3, the exposed airfoil area

CONTENTS

(A) is 129 m2, and the coefficients of drag (𝐶𝐷) and lift (𝐶𝐿) are 0.178 and
0.896, respectively. Recall that the equations for drag and lift forces are

𝐹𝐷 = 1
2𝐶𝐷 𝐴 𝜌 𝑉 2,

𝐹𝐿 = 1
2𝐶𝐿 𝐴 𝜌 𝑉 2,

Your plot should display an appropriate legend, title, axis labels, and units. The
line width of the two lines should be adequately sized. Remember to follow the
guidelines given in Lesson 3.1 for raising a vector to a power when plotting.

(3). The required specific input work (kJ/kg) for an insulated refrigerant com-
pressor is found to be,

𝑤𝑖𝑛 = ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛

where ℎ𝑜𝑢𝑡 and ℎ𝑖𝑛 have units of kJ/kg and correspond to the enthalpies at the
exit and inlet of the compressor, respectively. The inlet enthalpy is given as a
constant value of 278.76 kJ/kg. On the other hand, exit enthalpy will change
as a function of exit pressure and temperature. The following data is collected:

Exit pressure (bar) = [1.0 1.4 1.8 2.0 2.4 2.8 3.2]

ℎ𝑜𝑢𝑡 (𝑘𝐽
𝑘𝑔) = [278.76 286.96 295.45 304.50 313.49 332.60 342.21]

Plot the input work as a function of the exit pressure, and show the data as
points (use circles) on a standard linear plot. Add a figure title and axis labels,
use increased marker size, and show a grid.

(4). Torque, T, is given by 𝑇 = 𝐹 ⋅ 𝑟 where F is the force and r is the radius
(moment arm). Create two plots on two separate figures. In one figure, plot the
torque vs. radius. Use a constant value of F = 5 N and radius values of 0 to 10
m with a step size of 0.2. In the second figure, plot the force vs. radius.

Let the torque be a constant value of 5 Nm and the same radius values as the
first plot. You can rearrange the torque equation to solve for force: 𝐹 = 𝑇

𝑟 .
Include a title, axis labels, and a grid on both figures. Remember to follow the
guidelines given in Lesson 3.1 for a vector in the denominator when plotting.

CONTENTS

(5). Given the data set below for stress and strain for a uniaxial text on a
unidirectional composite material, create a 2D line plot of stress vs. strain. Use
a solid, green line with an appropriate line width. Also include a grid, axis
labels, axis limits, and units to improve the appearance and effectiveness of
your plot.

Table A: Stress vs. strain for a composite material.

Stress (MPa) Strain (%)
0 0
306 0.183
612 0.36
917 0.5324
1223 0.702
1529 0.867
1835 1.0244
2140 1.1774
2446 1.329
2752 1.479
2767 1.5
2896 1.56

CONTENTS

Module 3: PLOTTING

Lesson 3.3 – Advanced Plotting

Learning Objectives

1) represent data in a bar graph,

2) create line and surface plots in three dimensions,

3) graph data in a polar plot.

Does MATLAB have more plotting capabilities?

In the previous lessons in this module (Lessons 3.1 and 3.2), we learned how to
create and work with plots represented in two dimensions. However, sometimes
you may want to show the data in a different type of plot. Although we will only
cover a few of the more common advanced plotting capabilities in this lesson,
MATLAB offers many other useful plotting formats. In this lesson, we cover
bar graphs, 3D line and surface plots, and polar plots. This will give you a very
good foundation to branch out to other options MATLAB offers if you need to
do so in the future.

How can I create a bar graph?

Bar graphs are a great means to show quantities across groups. For example,
a bar graph may be used to display how many students have received a certain
discrete grade on an exam.

https://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html

CONTENTS

MATLAB uses the bar() function to create a bar graph. We demonstrate how
to create a bar graph in Example 1 as well as change some essential parameters.
In the first graph, there is a one-to-one correlation between groups and their
values. However, in the second graph, we have a row of y data for each x data
point. This results in “bar series”, which you can see in the graph output (Figure
1).

You can review the documentation for the syntax specifics on a number of
functional and formatting options like line color (outlines, fills, etc.), width,
and style. Try to play around with the code and change the values of each of
the inputs to get a sense of what aspect of the final output bar graph changes!
One important additional thing to know is that bar() does not accept strings
as categories directly. This means if your categories are strings (Example 1
has numbers as categories), you will need to use the function ‘categorical()‘ to
convert your categories (strings) into an appropriate data type. You can review
the MATLAB documentation for bar() to see an example of this case.

Example 1

Display the data sets given below (Data set 1 and Data set 2) with two separate
bar graphs. The “groups” (horizontal axis) are “21”, “22”, “23”. Make all the
bars black for data set 1, and use three different bar colors for data set 2. Put
a title and axis labels on the figure for data set 2.

Data Set 1: [1.1 8.4 5.1]

Data Set 2: ⎡⎢
⎣

1.1 1.4 1.6
8.1 8.8 8.4
5.5 5.7 5.6

⎤⎥
⎦

Solution

https://www.mathworks.com/help/matlab/ref/bar.html#bthxce9
https://www.mathworks.com/help/matlab/ref/bar.html#bthxce9
https://www.mathworks.com/help/matlab/ref/bar.html#bthxce9

CONTENTS

Figure 1: Figure outputs for Example 1.

CONTENTS

How can I create a 3D line plot?

Plotting in three dimensions can be useful when visualizing a function with two
independent variables which could be over space, time, or any other changing
quantity (e.g., 𝑧(𝑥, 𝑦), 𝑦(𝑥, 𝑡), etc.). For example, it may be useful to visualize
the speed of a car over time and across a number of starting speeds (using
𝑥(𝑡, 𝑣𝑖) = 𝑣𝑖 − 𝑎 ⋅ 𝑡). To do this, MATLAB makes plotting in three dimensions
very straightforward with both 3D line plots and 3D surface plots.

As the name suggests, a 3D line plot shows a line drawn across three dimensions.
A 3D line plot is generated with the plot3() function as seen in Example 2.
Note that the plot3() function is just like the conventional 2D plot() func-
tion from previous lessons; however, it needs one additional dependent variable
parameter in the third dimension.

Sometimes, you may wish to set the aspect ratio between axes to be 1:1:1. You
can do this using the daspect() function, which allows you to adjust the ratio
between all three axes.

Example 2

Create a 3D line plot from the functions 𝑥 = 𝑡, 𝑦 = 2 sin(4𝑡), and 𝑧 = cos(4𝑡)
for t values of 0 to 5 with an interval of 0.01. Note that any axis can be
independent/dependent on a 3D plot.

Solution

https://www.mathworks.com/help/matlab/ref/plot3.html
https://www.mathworks.com/help/matlab/ref/plot3.html
https://www.mathworks.com/help/matlab/ref/plot.html?searchHighlight=plot&s_tid=doc_srchtitle

CONTENTS

Figure 2: Figure output of a 3D line plot for Example 2.

How can I create a 3D surface plot?

Visualizing a surface in 3D requires that all surface points that we want to plot
to be defined in 3D (of course). This is not as simple as giving three vectors
like we did for plotting a 3D line because we now have a surface to plot. You
could think of this as many lines stacked against each other. There are two
main steps to getting the coordinates we need for a 3D surface. The first part of
this process is to create a grid of independent coordinate points. Next, we use
these 2D points to generate the third dimension, which is similar to generating a

CONTENTS

vector for a 2D function like we saw in previous lessons in this module (Lessons
3.1 and 3.2).

Fortunately, MATLAB provides the meshgrid() function to automate the pro-
cess of creating a mesh of surface points. We only need to give a vector input for
each independent variable (dimension), and meshgrid() will do the rest! Fig-
ure 3 shows an example of how meshgrid() creates coordinate grids (matrices)
from vector inputs.

Once the two coordinate grids (X and Y) are obtained, those two matrices are
used to create a third matrix of points as shown in Figure 3. This third matrix
will be plotted as the dependent variable (i.e., Z(X,Y)) on the 3D plot. You
can see further explanation and documentation of this process for meshgrid()
in MATLAB documentation.

Figure 3: Visual demonstration of how meshgrid() generates coordinate grids,
X and Y, (matrices) from range vector inputs. The right side shows the appli-
cation of these grids in order to generate a dependent function Z(X,Y) in three
dimensions.

After each of the three coordinate grid matrices is created (two independent
and one dependent), the surf() function can be used to plot the surface co-
ordinates (surface defined by the function) as shown in Example 3. Note that
you can change the color theme of the surface with the colormap command.
The different color themes that can be used with colormap are given in Table
1. There are many more color theme options than we can show here including
making complete custom theme colors.

https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/surf.html
https://www.mathworks.com/help/matlab/ref/colormap.html
https://www.mathworks.com/help/matlab/ref/colormap.html

CONTENTS

Table 1: Some common color themes for the colormap command to use with
3D surface plots.

Color Theme & Syntax Example Usage
spring colormap spring
summer colormap summer
autumn colormap autumn
winter colormap winter
hot colormap hot
gray colormap gray

Example 3

Create a 3D surface plot of the function 𝑍 = cos(𝑋) + 0.1𝑌 + 1. Use values
from -4 to 8 for the X variable with a step size of 0.3. For variable Y, use values
from 0 to 10 with a step size of 0.5. Specify the colormap theme ‘autumn’.

Solution

At the end of the example code, we use the function daspect(). Using
daspect() to manually set the aspect ratio for axes ensures that the figure will
not be skewed or stretched in a way that we do not want.

https://www.mathworks.com/help/matlab/ref/colormap.html

CONTENTS

Figure 4: Figure output of a 3D surface plot for Example 3.

Similar results to Figure 4 of creating a 3D surface can be obtained by using
the mesh() or contour() function instead of the surf() function. The mesh()
function (not to be confused with meshgrid()) creates a wire surface, while the
contour() function creates a 2D contour map (similar to a heat map) of the
surface.

How can I create a polar plot?

Some data will require you to visually analyze functions in the polar (or radial)
coordinate system, where data points vary around some center point. For ex-
ample, the forces around a stationary wheel vary around the wheel (i.e., force
is a function of angle).

We can plot such 2D polar/radial functions with the polarplot() function (use
polar() for previous versions (before R2016a)), which accepts an angle vector
(independent variable in Example 1) and a radius vector (dependent variable in
Example 1). Line properties such as color or width can be changed in the same
way used in plot().

Important Note: The angle vector for polarplot() must be in radi-
ans: not degrees.

https://www.mathworks.com/help/matlab/ref/mesh.html
https://www.mathworks.com/help/matlab/ref/contour.html?searchHighlight=contour&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/surf.html
https://www.mathworks.com/help/matlab/ref/mesh.html
https://www.mathworks.com/help/matlab/ref/meshgrid.html
https://www.mathworks.com/help/matlab/ref/contour.html?searchHighlight=contour&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/polarplot.html
https://www.mathworks.com/help/matlab/ref/polar.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html
https://www.mathworks.com/help/matlab/ref/plot.html?searchHighlight=plot&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/polarplot.html

CONTENTS

Example 4

Plot the function 𝑟 = 2 cos(5𝜃) on a polar plot. Use theta values from 0 to 3𝜋/2
with an interval of 0.01. Set appropriate limits on the plot.

Solution

While polar plots function similar to “regular” 2D Cartesian plots, changing
specifics of the plot like the grid, labels, font, spacings, etc. require a different
set of axis properties called polar axis properties. For example, ylim() is
rlim() and yticks() is rticks() for polar axes. You can see an application
for this in Example 4.

Figure 5: Figure output of a 2D polar plot for Example 4.

https://www.mathworks.com/help/matlab/ref/matlab.graphics.axis.polaraxes-properties.html
https://www.mathworks.com/help/matlab/ref/xlim.html
https://www.mathworks.com/help/matlab/ref/thetalim.html
https://www.mathworks.com/help/matlab/ref/yticks.html
https://www.mathworks.com/help/matlab/ref/rticks.html

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Create a bar
graph

bar() bar(groups,values)

Format group
names to be
used with bar()

categorical() categorical({'group1',
'group2'})

Create a 3D
line plot

plot3() plot3(x,y,z)

Set aspect ratio
between plot
axes

daspect() daspectdaspect([1,1,1])

Creates mesh of
surface points
for 3D surface
plot

meshgrid() mesh grid([1:10],[1:10])

Plot surface
coordinates

surf() surf(x,y,z)

Give surface a
color theme

colormap colormap winter

Create a polar
plot

polarplot() polarplot(theta,r)

Set custom
limits on the
radial axis

rlim() rlimrlim([rMin, rMax])

Set custom
limits on the
angular axis

thetalim() thetalim([thetaMin, thetaMax])

Set custom tick
values for the
radial axis

rticks() rticks({'r1','r2','r3'})

Set custom tick
values for the
angular axis

thetaticks() thetaticks({'t1','t2'})

Multiple Choice Quiz

(1). To create a 3D line plot, the correct function and inputs are

(a) plot3(x,y,z)

CONTENTS

(b) plot3d(x,y,z)

(c) plot(x,y,z)

(d) 3D(x,y,z)

(2). To create a 3D surface plot, the correct function is

(a) surf()

(b) contour()

(c) surfplot()

(d) surf3d()

(3). For a 3D surface plot, the inputs should be

(a) matrices

(b) vectors

(c) integers

(d) strings

(4). To place a label on the x-axis of a 3D plot, one should use

(a) xlabel()

(b) xlabel3()

(c) label1()

(d) label3d()

(5). For a 3D line plot, the inputs should be

(a) matrices

(b) vectors

(c) integers

(d) strings

CONTENTS

Problem Set

(1). Create a bar graph of the movies that are currently in the top five for the
highest domestic, opening weekend box office numbers (given below in Table
A). Make the bars on the graph red and be sure to make your graph look nice.
Add a title, change the y-axis tick labels to be in millions (e.g., $200 million
would be “200”), and y-axis label (be sure to note the scale is in millions).

Table A: Top five box office numbers (domestic) for the opening weekend of
the movie.

Movie Title
(abbrevi-
ated)

Avengers:
Infinity
War

The Force
Awakens

The Last
Jedi

Jurassic
World

The
Avengers

Opening
Weekend
Box Office
($)

257,698,183 247,966,675 220,009,584 208,806,270 207,438,708

(2). Plot the parametric functions 𝑥 = 2𝑡, 𝑦 = cos(3𝑡), 𝑧 = sin(2𝑡) using values
for t of 0 to 10 with an interval of 0.1. Use a red line with a line width of 3.

Try exploring the plot by clicking Tools>Rotate 3D from the figure window
menu. Note how the plot looks if you rotate it to view only the XY or XZ
planes.

(3). Plot the hyperbolic function𝑓(𝑥, 𝑦) = 𝑥2 +𝑦2 using values from -3 to 3 with
an interval of 0.1 for x and y. Choose a color theme that you like and put a
grid on the plot. Place axis labels on all three axes. Remember to use the array
operator for the exponents in this problem (Lesson 3.1).

(4). Plot the equation 𝑧 = ln(𝑥2 + 𝑦2) using values from -2 to 2 with an interval
of 0.1 for x and y. Choose a color theme that you like and put a grid on the
plot. Place axis labels on all three axes. Remember to use the array operator
for the exponents in this problem (Lesson 3.1).

(5). Plot the function for theta values of 0 to 4 in steps of 0.01 using a polar
plot. Change angular (theta) axis ticks and tick labels to be aligned with 0,
𝜋/4, 𝜋/2, 3𝜋/4, etc. Be sure to use the symbol for pi.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.1: Basic Algebra, Logarithms, and
Trigonometry

Learning Objectives

After reading this lesson, you should be able to:

(1) perform basic algebra with mathematical operators,

(2) find logarithmic functions with different bases in MATLAB,

(3) calculate basic trigonometric functions in MATLAB.

What kind of mathematical functions and opera-
tions are available in MATLAB?

Basic math (addition, subtraction, multiplication, etc.) syntax in MATLAB
is the same as it is in most calculators (+,-,*,/,^). The syntax is the same
whether used with variables or directly with numbers. You have seen these
numerous times in previous lessons, but we include them here for completeness.

Important Note: You must use the multiplication operator ev-
erywhere you have multiplication. 7𝑥 should be 7*x, and 7(𝑥 + 1) should be
7*(x+1). You will get an error if you are missing a multiplication operator.

CONTENTS

MATLAB has several mathematical functions such as logarithmic, exponential,
trigonometric, hyperbolic, etc. In this lesson, we will cover the use of logarithmic
and trigonometric functions.

How do I use logarithmic functions in MATLAB?

The first function that is presented is the log() function. This function is only
for the natural logarithm.

The inverse of a natural log function is the exponential function. You cannot
use log^-1 in MATLAB to find the inverse of a natural log. The function to
find the value of an exponential function is exp().

Example 1

Find the natural log of 4 and 0.2, and name these outputs 𝑦1 and 𝑦2, respectively.
Find the value of the exponential function of both 𝑦1 and 𝑦2, and examine the
results.

Solution

CONTENTS

CONTENTS

Note that when typing the function exp(num), it cannot be substituted by
exp^num, as this will give you a syntax error as given below.

??? Error using ==> exp

Not enough input arguments.

What about a logarithm that is not natural?

Besides the natural logarithm, one of the most common logarithms is log with
the base 10. The function to find a log with a base of 10 is log10().

To find the value of a logarithm that does not have a base of 10 or e (natural
log), you may use the change of base formula. To simplify the m-file when using
the change of base formula, it is recommended that you use natural logs to
change the base. The formula for the log of b with the base a is,

log𝑎(𝑏) = ln(𝑏)
ln(𝑎)

Example 2

Using MATLAB, find:

(a) log10(3)
(b) log8(3)

CONTENTS

Use the fprintf() function to describe the outputs in the Command Window.
Hint: Consider using the change of base formula for part (b).

Solution

Note the different code used for finding the natural log (Example 1) and the
log with a different specified base (Example 2). The functions for natural log,
exponential function, and log10 can all be found in Table 1 at the end of this
lesson.

CONTENTS

How can MATLAB evaluate trigonometric func-
tions?

MATLAB has several trigonometric functions. However, note that the input for
these trigonometric functions is in radians: not degrees.

The function to find the cosine of an angle is cos(). This function assumes an
input of an angle in radians. The functions for sine, tangent, cosecant, secant,
and cotangent are sin(), tan(), csc(), sec(), and cot(), respectively. These
functions have the same inputs and usage as the cos() function shown above
(see Table 1).

If you wish to input the argument to a trigonometric function in degrees, attach
a d to the end of the function. For example, to find the value of the cosine of
30 degrees, you may type, cosd(30).

Example 3

A right-angled triangle ABC, shown in Figure 3, with 𝑥 = 50∘ and AB = 3 is
given.

(a) Convert x to radians.

(b) Find BC.

(c) Find AC.

(d) What is the sum of ∠BAC and ∠ABC in degrees?

CONTENTS

Figure 1: The Command Window output for Example 3.

All outputs should be displayed in the Command Window using the fprintf()
or disp() functions.

Solution

Notice, in the example code, that MATLAB stores the numeric value of 𝜋 in
the predefined variable pi. Also take a look at the method to convert the value
of x from degrees to radians for part a (if you are not familiar with it). Be sure
that the argument for all applicable trigonometric functions is in radians or add
a d for degrees (e.g., sind(30)) as mentioned previously.

CONTENTS

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Find the natural log of a number log() log(a)
Evaluate the exponential function at a number exp() exp(a)
Log with base 10 log10() log10(a)
Sine of an angle sin() sin(a)
Cosine of an angle cos() cos(a)
Tangent of an angle tan() tan(a)
Cosecant of an angle csc() csc(a)
Secant of an angle sec() sec(a)
Cotangent of an angle cot() cot(a)
Sine inverse of a number asin() asin(a)
Cosine inverse of a number acos() acos(a)
Tangent inverse of a number atan() atan(a)
4 quadrant tan inverse complex number atan2() atan2(Im,Re)

Multiple Choice Quiz

(1). The function for finding the natural log of a number is

(a) ln()

CONTENTS

(b) log()

(c) loge()

(d) nlog()

(2). The function for finding the exponential function of a number is

(a) e()

(b) e\^()

(c) exp()

(d) exp\^()

(3). The function to find the value of sin(a) where a is 34∘, is

(a) sin(34)

(b) sine(34)

(c) sin((34*180)/pi)

(d) sin((34*pi)/180)

(4). The function acos()

(a) determines if the cosine value can be evaluated.

(b) evaluates the cosine of an angle in degrees.

(c) evaluates the cosine of an angle in radians.

(d) evaluates the inverse cosine of an argument.

(5). The sind() function

(a) determines if the sine value can be evaluated.

(b) evaluates the inverse sine of an argument.

(c) evaluates the sine of an angle given in degrees.

(d) evaluates the sine of an angle given in radians.

CONTENTS

Problem Set

(1). Given that 𝑎 = 7, 𝑏 = 2, and 𝑐 = 11, using MATLAB, find the values of

(a) log10(𝑏)
(b) 𝑏ln(𝑐)
(c) 𝑒− 𝑎

2

(d) log2(𝑎)
Output each solution to the Command Window, and check your results using a
calculator.

(2). The approximate value of 𝑒𝑥 (exponential function) can be found by using
a finite number of terms of the following infinite Maclaurin series,

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + ...

for all 𝑥.
Complete the following using 𝑥 = 2.3:
(a) Compare the output of the first 3 terms for the Maclaurin series for expo-
nential function against the MATLAB output for the exponential function.

(b) Redo part (a) using first 6 terms of the Maclaurin series.

Make sure to use the fprintf() or disp() functions to display your program
outputs in the Command Window.

(3). Given the triangle ABC, shown in Figure A, with angles 𝜃1 =
𝜋
8 radians, 𝜃2 = 34∘, and length AB = 11, find the following.

(a) 𝜃3 in degrees

(b) BC

(c) AC

(d) area of triangle ABC

Hint: The law of cosines is given as

AB
sin(𝜃1) = BC

sin(𝜃2) = AC
sin(𝜃3)

The area of a triangle is

CONTENTS

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

where s = semi-perimeter of the triangle and a, b, c = length of the three sides
of the triangle

Figure A: Labeled triangle ABC is shown (not to scale).

Output each solution to the Command Window and verify your results > with
a calculator. Make sure to use the fprintf() or disp() functions > to display
your program outputs in the Command Window.

(4). The approximate value of sin(𝑥) can be calculated using a finite number of
terms of the following infinite Maclaurin series

sin(𝑥) ≈ 𝑥 − 𝑥3

3! + 𝑥5

5! − 𝑥7

7!
for all x. Complete the following using 38∘

(a) Compare the output of the first 3 terms of the Maclaurin series provided,
against the MATLAB output for the sine command.

(b) Redo part (a) using the first 5 terms of the series.

Make sure to use the fprintf() or disp()‘ functions to display your program
outputs in the Command Window.

(5). The mechanical components of a certain suspension system dynamically
respond to an applied force by vibration. The actual position, x(t), of the center
of mass of the system as a function of time, t, is given by,

𝑥(𝑡) = 𝑋𝑒𝜉𝜔n𝑡(cos(√1 − 𝜉2𝜔n𝑡))

Ideally, the center of mass would follow the following position function,

CONTENTS

𝑥(𝑡) = 𝑋𝑒−𝜉𝜔n𝑡

Given that 𝑋 = 2, 𝑓n = 1.3 𝜔n = 2𝜋𝑓n 𝜉 = 0.1
Plot the actual and the ideal position of the system as a function of time. Use
a legend, give axis and graph titles, and use reasonable line thicknesses and
symbols. Plot the position for the time from 0 to 8 seconds in a single plot
where the horizontal axis is the time and the vertical axis is the position of the
center of mass.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.2: Symbolic Variables

Learning Objectives

After reading this lesson, you should be able to:

1) use symbolic variables in MATLAB to form equations,

2) substitute a number or variable into a symbolic expression,

3) convert symbolic variables to other data types.

What is a symbolic variable?

A symbolic variable does not have a numerical value assigned to it. Use the
following function as an example 𝑓(𝑥) = 𝑥2; where the symbolic variable is 𝑥.
The value of 𝑥 has no numeric value assigned to it; therefore, it is a symbolic
variable.

The symbolic toolbox introduces syms: a new data type. syms allows you to
create variables without assigning them a value (number, string, etc.). This is
very useful when doing anything beyond the basic “2+2” math. Solving equa-
tions, calculus, and differential equations are a few examples of how syms is used
to solve mathematical problems, and it demonstrates part of the functionality
of the MATLAB symbolic toolbox.

CONTENTS

What is a MATLAB toolbox?

A MATLAB toolbox, more traditionally referred to as a package or library in
other programming languages, is just a set of code (which you do not need to
see) that gives you more predefined functions. We have been using functions all
along, but have not talked explicitly about a “toolbox” because we have used
pre-installed, default functions. One example is the plot() function. MAT-
LAB knows how to plot the data you input to the function because there is an
algorithm doing the work for you behind the scenes. We will learn how to write
our own functions and reference them in Module 7.

How do I use symbolic variables?

To use a symbolic variable in MATLAB, you use the syms command. This
command needs to be placed before the symbolic variable that is intended to
be used in an expression. Otherwise, MATLAB will return an “undefined vari-
able” error. The syms command tells MATLAB to treat a specified variable as
symbolic (it has no value). Note that symbolic variables must follow the same
naming rules as all other variables (reference Lesson 2.1 for naming rules).

If more than one symbolic variable is required, the variables can be made sym-
bolic by using the syms command by separating each symbolic variable by a
space. Look at Example 1 to see the syms command in action.

Example 1

Given two functions 𝑦(𝑡) and 𝑧(𝑡, 𝑥), 𝑦 = 𝑡2 + 2𝑡 and 𝑧 = 𝑡𝑥 + 1
𝑥2 , use the syms

command and display each function in the Command Window.

Solution

CONTENTS

Example 1 shows the syms command being used to make two variables, 𝑡 and
𝑥 symbolic. These symbolic variables are then used to generate the mathemat-
ical functions 𝑦 and 𝑧. The Command Window output shows the two specified
functions being output to the Command Window (they were not suppressed).
Another way to direct output mathematical functions containing symbolic vari-

CONTENTS

ables is to use the use the disp() function (e.g., disp(y)).

How do I clear specific variables?

To make a variable no longer symbolic, the clear command is used. You may
recall that the first two lines of most m-files should be clc and clear. We know
that using clear will clear all of the MATLAB variables stored from the current
workspace, which essentially means that all the variables you defined. However,
you may also specify precisely which variable(s) to clear by using the clear
command followed by the variable names. For example, clear x would clear the
variable x from memory, and clear myVar would clear the variable myVar from
memory. Note that clearing a symbolic variable is application-specific and not
mandatory.

How can I convert from syms data type to other
data types?

Since syms is a data type in MATLAB, it often needs to be converted to a
different data type, such as double or char, to display it. See Example 2 for
some specific use cases. Using the wrong conversion could result in an error.
Some commonly used functions to convert the syms data type to other data
types/formats are:

• double() - > Convert a symbolic matrix with numerical value to MAT-
LAB numeric data type.

• char() - > Convert symbolic objects to strings.

Example 2

Input the function 𝑓(𝑠) = 𝑠2 + 4𝑠 + 56 to MATLAB, convert it from sym data
type to char data type. Then output the converted function using fprintf().

Solution

https://www.mathworks.com/help/symbolic/syms.html
https://www.mathworks.com/help/symbolic/syms.html
https://www.mathworks.com/help/symbolic/double.html
https://www.mathworks.com/help/matlab/ref/char.html

CONTENTS

CONTENTS

Can I replace a symbolic variable with a value?

MATLAB makes changing/substituting the value or the name of a symbolic
variable simple. Using the subs() function, you can assign a value for the
symbolic variable (e.g., 𝑥 = 1) or rename it (e.g., 𝑥 = 𝑎). This function is
handy when we plot equations later in this lesson and in future lessons.

Example 3

Find the value or form of the function 𝑓(𝑠) = 𝑠2 + 4𝑠 + 56 at 𝑠 = 𝑎 and 𝑠 = 1.

Solution

http://www.mathworks.com/help/symbolic/subs.html

CONTENTS

CONTENTS

How can I change the output format of syms?

You can change the output type (scientific, floating-point, etc.) directly within
an fprintf() function if your number is in decimal form. However, MAT-
LAB returns exact solutions by default; that is, it will return “1/3” instead
of “0.33333…”. The precision of an answer can be adjusted using the function
vpa().

This is sufficient for most purely numerical answers. If you have an answer that
contains symbolic variables like x, t, etc., you may need to use the function
simplify() to help clean up and simplify messy solutions.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Create a symbolic
variable

syms syms x

Convert a variable
(with numeric value)
to double precision
(numeric data type)

double() double(var)

Convert a variable to
the char data type

char() char(var)

Substitute a new
value or variable for
the current symbolic
variable

subs() subs(eq,replaceVar,newVar)

Adjust the precision
of a numeric variable

vpa() vpa(x,3)

Simplify an algebraic
expression

simplify() simplify (x)

Multiple Choice Quiz

(1). If one was going to write 𝑦 = 3 ∗ 𝑥 in an m-file, the variable(s) that would
need to be declared as symbolic is (are)

(a) x

https://www.mathworks.com/help/matlab/ref/fprintf.html
https://www.mathworks.com/help/symbolic/vpa.html
http://www.mathworks.com/help/symbolic/simplify.html

CONTENTS

(b) y

(c) both x and y

(d) either x or y

(2). Given the following code:

the output of the last line in the Command Window is

(a) e = 7*c^2

(b) e = m*c^2

(c) e = 14m

(d) Undefined function or variable…

(3). To display the function 𝑓(𝑥) = 𝑥2 in the Command Window given the
program

the correct line of code to add is

(a) fprintf('The function is f(x) = %g.\n',char(f))

(b) fprintf('The function is f(x) = %s.\n',char(f))

(c) fprintf('The function is f(x) = %g.\n',double(f))

(d) fprintf('The function is f(x) = %f.\n',vpa(f))

CONTENTS

(4). The symbolic variable that will cause an error when used in an m-file is

(a) ex

(b) sin

(c) tt

(d) x

(5). The Command Window output of the last line of this program is

(a) 3x

(b) 15

(c) y

(d) Undefined function or variable 'x'.

Problem Set

(1). In a single m-file, display the expression in all the parts below in the
Command Window.

(a) 𝑦 = 2
3𝑥2 + 𝑥 + 𝑥 1

2

(b) 𝑧 = 𝑥2𝑦
𝑥 + 1

(c) 𝑃 = 𝑚𝑅𝑇
𝑉

(d) 𝑥 = 𝑀𝜈
𝑀𝜈 + 𝑀𝑙

(2). In most cases, the weight w of an object is determined by the mass of the
object m and the acceleration acting on the body of the object a given by the
relationship

𝑤 = 𝑚𝑎

CONTENTS

Display the general expression to find the weight of a body.

(3). Evaluate the following functions. Output both the function and the result-
ing value from evaluating the functions at the given numbers to the Command
Window. You should use a single fprintf() function for each function-value
pair of outputs.
(a) Evaluate 𝑓(𝑥) = 𝑥4 + 98 when 𝑥 = 2.
(b) Evaluate 𝐺(𝑠) = 𝑠2 + 5𝑠 − 6 when 𝑠 = 3.4.
(c) Evaluate 𝑃(𝑙) = 𝑙2 + 3 when 𝑙 = 8.1.

(4). The brake power of an internal combustion engine is found by

𝑃 = 𝑟 ∗ 𝑇
where, P = Power (Watt) r = Rate (radian/sec) T = Torque (N-m) and the
engine torque is given by

𝑇 = 0.62𝑟
Using MATLAB,
(a) display the general expression for the brake power generated by the engine,
(b) find the value of the brake power when r is 350 rad/sec,
(c) plot power vs. rate with values of r from 0 to 630 rad/sec. Use appropriate
labels, title, etc., as required to describe the plot.

(5). The acceleration of a point on a body is composed of four components: the
tangential, normal, sliding, and Coriolis. Assuming that sliding and Coriolis
effects of acceleration are zero, the tangential $ (a_tan) $ and normal (𝑎𝑛𝑜𝑟𝑚𝑎𝑙)
components of acceleration can be combined as functions of time, t,

𝑎𝑡𝑜𝑡𝑎𝑙 = √𝑎2
tan + 𝑎2

𝑛𝑜𝑟𝑚𝑎𝑙

where
𝑎tan = 2 sin(1

2𝑡) + 𝑡2

𝑎𝑛𝑜𝑟𝑚𝑎𝑙 = (1
3 𝑡3 − 4 cos(1

2 𝑡))2

300
The units of time are seconds and the units of acceleration are m/s2. Display
the equation for the total acceleration of the body in the Command Window
(use t as a symbolic variable). Find the value of the acceleration of the body
when 𝑡 = 4.3 seconds.
Hint: Do not name the variable for the tangential acceleration “atan”. It is a
predefined function in MATLAB.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.3: Solution of Linear and Nonlinear
Equations

Learning Objectives

After reading this lesson, you should be able to:

• solve linear equations in MATLAB,

• solve nonlinear equations in MATLAB,

• manipulate polynomials and polynomial coefficients,

• plot data with the syms data type.

How do I solve for roots of a linear equation?

In this section, we will go over using MATLAB to solve for the roots of an
equation using solve(). For example, 𝑥 − 2 = 0 has a root at 𝑥 = 2.
Example 1 shows the procedure for solving for the root of a linear equation in
MATLAB. Note that when the equation is defined in Example 1, we write y =
9*x +7 == 10. This means that the equation 9*x + 7 == 10 is stored in the
variable y, which we call subsequently in the program like we would any other
variable. The right-hand side of the equation that you enter does not have to
be equal to zero. For example, you could also write 9*x == 3 and still get the
same answer from MATLAB.

https://www.mathworks.com/help/symbolic/solve.html

CONTENTS

You might be asking at this point, “Why do we need double equals when entering
the equation?” The simple answer to this is that MATLAB needs to recognize
that you are entering an equation rather than storing something in a variable.
Remember that y = 9*x + 7 == 10 has two parts. Entering the equation 9*x
+ 7 == 10 is stored in the variable y. MATLAB needs a way to differentiate
between these two operations. All you need to remember is to put the double
equals (==) when entering an equation. MATLAB will return an error if you
fail to do so.

Example 1

Solve for the root of the 9𝑥 + 7 = 10.Display the equation and the root of the
equation using a single fprintf() function.

Solution

CONTENTS

What is a nonlinear equation?

A nonlinear equation is an equation that has nonlinear terms of the unknowns.
One of the simplest examples of a nonlinear equation is the quadratic equation
that has the form

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (1)

where,

𝑎 ≠ 0.

The values of a, b, and c are constant coefficients and x is the independent
variable. If one were to solve a nonlinear equation using traditional methods
they would need to be provided at least two items: the nonlinear equation and
the unknown variable to solve for.

Take the case of the equation given in the above Equation (1). The nonlinear
equation is a quadratic equation and the variable to solve for is x. This example
can be solved using the widely known solution of a quadratic equation as

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎 (2)

However, other more complex nonlinear equations can take longer to solve ex-
actly, while most nonlinear equations are impossible to solve analytically. An-
other example of a nonlinear equation is sin(2𝑥) = 3𝑥

7 . In these cases, MATLAB
can be used to solve the nonlinear equations or even to verify the results obtained
from an analytical method.

CONTENTS

How can I use MATLAB to solve nonlinear equa-
tions?

As we know, MATLAB is a tool. Just like a mechanic might use a wrench to
solve a problem, an engineer, scientist or mathematician might use MATLAB to
solve a problem. In the case of solving a nonlinear equation, MATLAB can be
used to solve nearly any equation (limited more so by the operating computer
than the program itself).

We used solve() to find the roots of a linear equation as a demonstration of
symbolic variables. However, solve() is also used to find the roots of nonlinear
equations. In this case, we may get multiple roots. Unique, none and infinite
number of solutions are other possibilities for nonlinear equations. Multiple
roots will be stored in vector form, which you can see in Example 2. The
variable soln is a vector that holds the three roots we found from the third-
order polynomial equation.

You can see in Example 2 that the solution to the nonlinear equation has three
possible values. We know this is correct because the equation is a cubic equation.
The outputs to the solve command are stored in a vector and can each be pulled
out of the vector by using matrix references, which we covered in Lesson 2.6.

Example 2

Solve the nonlinear equation 𝑥3 − 15𝑥2 + 47𝑥 = 33 for x using MATLAB (that
is, find its roots).

Solution

CONTENTS

MATLAB also provides a method to solve an equation numerically using
vpasolve() (note that solve() uses analytical methods). Although polynomial

https://www.mathworks.com/help/symbolic/vpasolve.html?s_tid=srchtitle

CONTENTS

equations have a finite number of solutions (which is equal to the order of the
polynomial), other nonlinear equations can possibly have an infinite number of
solutions (e.g., tan (𝑥) = 𝑥). Therefore, MATLAB does not report all solutions
in the same way. Check the vpasolve() documentation for specifics.

In Example 3, we show an application that shows a real-world problem. The
only difference here is the prerequisite mathematical knowledge to set up the
problem (find the appropriate equation). The programming portion is more
or less the same, which is the beauty of MATLAB and many other similar
programming languages. Once written, a program like the one in Example 2
can be quickly edited for a completely different equation like the one in Example
3. We chose to use the aforementioned vpasolve() in Example 3.

Example 3

Find the depth x to which a ball is floating in water (see Figure 1) based on the
following cubic equation

4𝑅3𝑆 − 3𝑥2𝑅 = −𝑥3

where,
R = radius of the ball,

S = specific gravity of the ball.

Use values of R and S to be 0.055 and 0.6, respectively.

https://www.mathworks.com/help/symbolic/vpasolve.html?s_tid=srchtitle
https://www.mathworks.com/help/symbolic/vpasolve.html?s_tid=srchtitle

CONTENTS

Figure 1: Diagram of a partially submerged sphere in water for use with
Example 3.

Solution

CONTENTS

Note the three possible solutions to the third order polynomial equation for
Example 2. Since the limits of x are given by 0 ≤ 𝑥 ≤ 2𝑅 and R = 0.055, the
limits of x are 0 ≤ 𝑥 ≤ 0.11. Hence, the only physically acceptable solution is
𝑥 = 0.0624.

CONTENTS

Is there a faster way to work with polynomial
equations in MATLAB?

We can create a symbolic polynomial from a vector of coefficients using the
function poly2sym(). (You can do the reverse operation with sym2poly().)
This can be especially helpful when using functions that return a vector of
coefficients directly such as polyfit(), which we will cover later in Lessons 4.7
and 4.8. You can see in Example 4 that the coefficient output (coefs) is not
very intuitive. However, we can directly convert the coefficients to polynomial
form, which is more intuitive, and find the roots of the corresponding polynomial
with the roots() function.

Example 4

Given any size vector of polynomial coefficients, generate the full polynomial in
symbolic form and find its roots.

Test the program using the coefficient vector [0.003 −0.0748 −4.2660 1.8370].

Solution

https://www.mathworks.com/help/symbolic/poly2sym.html?searchHighlight=poly2sym&s_tid=doc_srchtitle
https://www.mathworks.com/help/symbolic/sym2poly.html
https://www.mathworks.com/help/matlab/ref/polyfit.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/roots.html?searchHighlight=roots&s_tid=doc_srchtitle

CONTENTS

CONTENTS

Can I plot with symbolic variables?

Plotting with syms has all the same considerations as any other function you
wish to plot with the additional step of converting to a data type that is ac-
cepted by the function you are using to plot (e.g., plot(), [bar()](https://
www.mathworks.com/help/matlab/ref/bar.html?s_tid=srchtitle), etc.). That
is, you will likely need to convert from sym to a numeric data type to plot the
data.

To get a vector of data points to plot, we can use the subs() function. Although
it was used in the previous examples to replace a variable with just a single
number or character, it also accepts vector inputs as the replacement value(s).
When the input is a vector, the output is a corresponding vector as well.

Example 5

Plot the function 𝑦(𝑥) = 4𝑥3 − 20𝑥2 + 9𝑥 and its zeros on the same plot. Choose
the domain to plot the function based upon the solutions found for the zeros of
the function. Include title, axis labels, legend, and plot grid.

Solution

https://www.mathworks.com/help/symbolic/syms.html
https://www.mathworks.com/help/matlab/ref/plot.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/bar.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/bar.html?s_tid=srchtitle
https://www.mathworks.com/help/symbolic/syms.html
https://www.mathworks.com/help/matlab/numeric-types.html
https://www.mathworks.com/help/symbolic/subs.html?s_tid=srchtitle

CONTENTS

CONTENTS

Figure 6: The MATLAB figure output for Example 5.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Find the roots of an
equation

solve() solve(eq,x)

CONTENTS

Task Syntax Example Usage
Numerically find the
roots of an equation

vpasolve() vpasolve(eq,x)

Form a symbolic
polynomial function
from coefficients

poly2sym() poly2sym(coefs,x)

Extract the coefficients
from a polynomial

sym2poly() sym2poly(polynomial)

Get the roots of a
polynomial using only
is coefficients as an
input

roots() roots(coefs)

Multiple Choice Quiz

(1). A MATLAB function for solving an equation analytically is

(a) fsolved()

(b) nonlinear()

(c) vpasolve()

(d) solve()

(2). The MATLAB function to find the solution to a polynomial equation given
only its coefficients is

(a) solve()

(b) coefs()

(c) roots()

(d) polysolve()

(3). To solve 𝑥2 + 2𝑥 = 0, which line of code should be added to the program

(a) solve(x^2+2x==0,x)

CONTENTS

(b) solve(x^2-2x,x)

(c) solve(x^2+2*x=0,x)

(d) solve(x^2+2*x==0,x)

(4). The MATLAB substitution function subs() has __________ input
variables

(a) 1

(b) 2

(c) 3

(d) 4

(5). The output solutions for a single nonlinear equation given by the solve()
function

(a) gives only one solution to the equation.

(b) gives only the physically acceptable solution(s).

(c) provides the solutions as separate outputs.

(d) stores solutions in a single vector.

Problem Set

(1). Use the solve() function to find the solution of the equation 3𝑥2 +2𝑥 = 5.
Display the answers in the Command Window.

(2). Given that the value of the two variables a and b can be changed, set up
the equation 𝑎𝑥2 + 2𝑥 = 𝑏 so that it can be solved for any real values of a and
b.

(3). Solve the nonlinear equation 2𝑥 + 𝑒−𝑥 = 5. Output both the original
equation and at least one of its roots using a single fprintf() function.

(4). You are working for ‘DOWN THE TOILET COMPANY Inc.’ that makes
floats for H3H3 toilets. The floating ball has a specific gravity of 0.6 and has a
radius of 5.5 cm. You are asked to find the depth to which the ball is submerged
when floating in water (Figure A).

CONTENTS

The equation that gives the depth x in meters to which the ball is submerged
underwater is given by

𝑥3 − 0.165𝑥2 + 3.993 × 10−4 = 0

Find the depth, 𝑥, to which the ball is submerged underwater.

Figure A: Floating ball in water for Exercise 4.

(5). You have a spherical storage tank containing oil (Figure B). The tank has
a diameter of 6 ft. You are asked to calculate the height, h, to which a dipstick
8 ft long would be wet with oil when immersed in the tank when it contains 4
ft3 of oil. The equation that gives the height, ℎ, of the liquid in the spherical
tank for the above-given volume and radius is given by

𝑓(ℎ) = ℎ3 − 9ℎ2 + 3.8197 = 0

Find the height, ℎ, to which the dipstick is wet with oil.

CONTENTS

Figure B: Dipstick inside spherical tank which contains some oil. Used in
Exercise 5.

(6). You are making a cool bookshelf to carry your interesting books that range
from 8 1

2” to 11” in height. The bookshelf material is wood, which has a Young’s
Modulus of 3.667 Msi, length (L) of 29”, a thickness of 3/8”, and width of 12”.
You want to find the maximum vertical deflection of the bookshelf. The vertical
deflection of the shelf is given by

𝑣(𝑥) = 0.42493 × 10−4𝑥3 − 0.13533 × 10−8𝑥5 − 0.66722 × 10−6𝑥4 − 0.018507𝑥

where 𝑥 is the position along the length of the beam (Figure C). To find the
maximum deflection we need to find where

𝑓(𝑥) = 𝑑𝑣
𝑑𝑥 = 0

and conduct the second derivative test. The equation that gives the position,𝑥,
where the deflection is extreme (minimum or maximum) is given by

−0.67665 × 10−8𝑥4 − 0.26689 × 10−5𝑥3 + 0.12748 × 10−3𝑥2 − 0.018507 = 0

(a) Plot the deflection of the beam, 𝑣(𝑥), for values of x from 0 to L.

(b) Find the position 𝑥 where the deflection is maximum.

CONTENTS

(c) Find the value of the maximum deflection.

Figure
C: Schematic of bookshelf used in Exercise 6.

(d) A trunnion has to be cooled from a temperature of 80∘𝐹before it is shrink-
fitted into a steel hub (See Figure D on the next page). The equation that
gives the temperature, 𝑇𝑓 , to which the trunnion has to be cooled to obtain the
desired contraction is given by

𝑓(𝑇𝑓) = −0.50598 × 10−10𝑇 3
𝑓 + 0.38292 × 10−7𝑇 2

𝑓 +0.74363 × 10−4𝑇𝑓 + 0.88318 × 10−2 = 0

Find the roots of the equation to find the temperature, 𝑇𝑓 , to which the trunnion
has to be cooled. Choose the physically acceptable root of the equation.

CONTENTS

Figure D: Trunnion and hub shown prior to shrink fitting for Exercise 7.

CONTENTS

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.4: Differential Calculus

Learning Objectives

After reading this lesson, you should be able to:

1) find the derivatives of continuous functions,

2) find the derivatives of discrete functions,

3) use derivatives to solve basic engineering problems.

What is a derivative?

The derivative of a function represents the rate of change of a variable with
respect to another variable (see Figure 1).

CONTENTS

Figure 1: Shown is a line tangent to a function, y(x).
For example, the velocity of a body is defined as the rate of change of the location
of the body with respect to time. The location is the dependent variable while
time is the independent variable. Now if we measure the rate of change of
velocity with respect to time, we get the acceleration of the body. In this case,
the velocity is the dependent variable while time is the independent variable.
Recall from calculus, the derivative of a function 𝑓(𝑥) is defined as

𝑓 ′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

The value of the first derivative of a function evaluated at a point on the function
is the slope of the line tangent to the function at that point. This concept is
depicted in Figure 1.

How do I take the derivative of a function in
MATLAB?

To do the differentiation, one needs three inputs:

1. The function f(x) that needs to be differentiated.

2. The variable with respect to which the function needs to be differentiated,
x.

CONTENTS

3. The order of derivative needed, n.

In MATLAB, these three inputs are required to find the derivative of a symbolic
function. To differentiate a symbolic function, the MATLAB function diff()
can be used. The order of the derivative can be specified, as shown in Example
1, but the diff() function defaults to a first-order derivative if no order is given.

It is important to note that the diff() function is also used to find the difference
between corresponding points in two vectors (covered in more detail later in this
lesson), and if the programmer does not use the correct input variable placement
(syntax), the output would be incorrect. Example 1 shows the diff function
being used to find a derivative.

Example 1

Using the diff() function, write a program that finds and outputs the following.

(a) 𝑑
𝑑𝑥 (7𝑒3𝑥)

(b) 𝑑2

𝑑𝑥2 (sin(𝑥2) + 𝑥6)

Solution

CONTENTS

To solve the problem given in Example 3 one must first enter the symbolic
functions to be differentiated. The syms command must then be used to define
the symbolic variable(s) before defining any function(s).

Example 2

Find the slope of the tangent line to the function𝑠(𝑡) = 𝑒𝑡 sin(2𝑡) at 𝑡 = 3, using
the diff() and subs() functions.

Solution

The diff() function is used to find the slope of the tangent line (first derivative)
and then the subs() function is called to evaluate the slope of the tangent line
at the specified value of t. To show the inputs and outputs for this example, the
char() function is used to convert symbolic expressions into printable strings.

CONTENTS

Where are derivatives used in engineering?

Derivatives have many uses in engineering and mathematics. Some derivatives
are easy to find, others are complex, and some are even partial.
Derivatives are used to set up differential equations, which will be covered in
Lesson 4.9. In engineering and physics, one of the most common uses of deriva-
tives is in the relationship of position, velocity, and acceleration functions of a
body. Where given the position of a body as a function of time, the derivative of
position with respect to time is the velocity function. The derivative of velocity
with respect to time is the acceleration function of the body.

CONTENTS

Another common use of derivatives is finding the location of minimum and
maximum points of a function. We know that the value of the derivative is the
slope of the line tangent to a function at a given point. If we set the found
derivative equal to zero (tangent slope is zero) and solve for the independent
variable, we can find the local minima or maxima of a function. This technique
is used for optimization.

Example 3

The position of a body is defined by the function s(t) as

𝑠(𝑡) = 7𝑡3 + ln(2𝑡) − 9.8𝑡2

where t is in seconds, and s is in m/s. Using MATLAB, output the velocity and
acceleration functions of the body. Also, find the velocity and acceleration of
the body at 𝑡 = 2.5 seconds.

Solution

CONTENTS

In Example 3, the diff() function is used to find the velocity and the acceler-
ation of the body. The subs() function is then used to find the velocity of the
rocket at 𝑡 = 2.5 seconds.

How do I find the derivative of a discrete function
in MATLAB?

The diff() function can also be used in the case of taking the derivative of a
function with discrete data points. That is, differentiating a matrix or vector
containing independent variables such as [2 4 6 8].
If a continuous/exact mathematical function is not available and a discrete data
set is presented (e.g., position sensor reading), the diff() function can be used
to find the differences, or steps, between subsequent data entries which in turn
can be used to find the numerical derivative.

The following examples show this discrete/numerical differentiation performed
with the diff() function. The difference between subsequent vector elements is
used to find the numerical derivative. This approximation is generally referred
to as the finite difference formula.

Example 4

Find the approximate derivative of the discrete function, F(t), given the follow-
ing points.

The discrete function F(t) is given by

t 0.0 0.5 1.0 1.2 2.0 2.5 3.0
F 0.0 10 20 45 68 88 100

https://www.mathworks.com/help/symbolic/diff.html
https://www.mathworks.com/help/symbolic/diff.html
https://www.mathworks.com/help/symbolic/diff.html
https://en.wikipedia.org/wiki/Numerical_differentiation

CONTENTS

Use the forward divided difference method as the numerical algorithm to esti-
mate the first derivative between the discrete data points.

The forward divided difference formula is given by dF(t)
dt ≈ F (t + Δt) − f(t)

Δt .

Solution

Note, the period (.) in dF./dt acts as an element-by-element array operator.
This is fully covered in Lesson 4.6 on Linear Algebra, which you can review as
needed.

CONTENTS

Note that other numerical differentiation algorithms are possible and should
be considered depending on the particular discrete data set and application.
In general, as the data sample resolution and sampling rate increases, the dif-
ferences between the values obtained using numerical differentiation methods
becomes negligible.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Find the
derivative of a
symbolic function

diff() diff(func,x,2)

Find the
difference between
adjacent elements
in a vector

diff() diff(xPoints)

Multiple Choice Quiz

(1). The MATLAB function for symbolic differentiation is

(a) dif()

(b) diff()

(c) int()

(d) differentiate()

(2). To find 𝑑2

𝑑𝑥2 (7𝑒4𝑥), the correct line of code to add to the following program
is

https://www.mathworks.com/help/matlab/numerical-integration-and-differentiation.html

CONTENTS

(a) diff(7*exp(4*x),x,2)

(b) diff(7*exp(4*x),x,1)

(c) diff(7exp(4*x),x,1)

(d) diff(7*exp^(4*x),x,2)

(3). To find 𝑓(3), given 𝑓(𝑥) = 𝑥2 + 8, the correct line of code to add to the
following program is

(a) subs(f,3,x)

(b) subs(f,x,3)

(c) f(3)

(d) function(f,3)

(4). The diff() function is used to
(a) find the derivative of a symbolic function.
(b) calculate the difference between adjacent elements in a vector.
(c) perform the subtraction of two variables.
(d) both A and B

(5). Given the discrete function, y(x), as the vectors x and y of discrete data
points, which of the following would not appear in a program that approximates
the first derivative between data pairs?
The following partial program is provided for reference.

CONTENTS

(a) diff(y,x,1)

(b) diff(x)

(c) diff(y)

(d) diff(y)./diff(x)

Problem Set

(1). Use the diff() function to find
𝑑

𝑑𝑥(7 sin(4𝑥)) at x = 3.5

(2). Use the diff() function to find
𝑑2

𝑑𝑥2 (4 sin(4𝑥2) + 𝑒𝑥) at x = 3.75

(3). A rectangle is inscribed in a semi-circle of radius 2m (as shown in Figure
A). If the area of the rectangle is to be maximized, find the dimensions of the
rectangle.

Figure A: Rectangle inscribed inside circle used for Exercise 3.

(4). The velocity of a rocket is given by

𝜈(𝑡) = 2000 ln [14 × 104

14 × 104 − 2100𝑡] − 9.8𝑡, 0 ≤ 𝑡 ≤ 30

where 𝜈 is given in m/s and 𝑡 is given in seconds. At 𝑡 = 16𝑠, find the velocity
and acceleration of the rocket. Display your results in the command window
using the appropriate method.

CONTENTS

(5). An experimental single-piston pump is put through a series of tests in a
laboratory. The velocity (as a function of time) of the piston in the pump is
measured as various forces are applied to the piston. To determine expected
bearing life, rod stress, and pumping capacities, the piston force function (as a
function of time) must be found. To help determine the efficiency of the pump,
the kinetic energy function of the piston must also be determined (assume the
piston has no potential or rotational stored energy).
The piston velocity function is

𝑣(𝑡) = (3.21) sin(2.3𝑡) + cos(2.3𝑡) ln(5.2𝑡) , 0 < 𝑡 ≤ 10

where,
v is the velocity given in meters/second
t is the time given in seconds
Given is the mass of the piston as 0.73 kg. Using MATLAB, write a program
that outputs:

(a) the piston force function,𝐹(𝑡),
(b) the piston kinetic energy function, 𝐾𝐸(𝑡),
(c) the maximum piston speed, m/s,

(d) the minimum piston speed, m/s.

Hint:

Force = mass × acceleration

Kinetic Energy = 1
2 × mass × velocity2

(6). There is strong evidence that the first level of processing of what we see is
done in the retina. It involves detecting something called edges or positions of
transitions from dark to bright or bright to dark points in images. These points
usually coincide with boundaries of objects. To model the edges, derivatives of
functions such as

𝑓(𝑥) = {1 − 𝑒−𝑎𝑥, 𝑥 ≥ 0
𝑒𝑎𝑥 − 1, 𝑥 ≤ 0

need to be found. Find 𝑓 ′(0.1) and 𝑓 ′(−0.1). Assume 𝑎 = 0.24.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.5: Integral Calculus

Learning Objectives

After reading this lesson, you should be able to:

1) integrate a continuous function in MATLAB,

2) integrate a discrete function in MATLAB.

What is integration?

Integration is defined as the area under a curve (see Figure 1).

CONTENTS

Figure 1: The integral of the function 𝑦(𝑥) from the limits of a to b is shown
in the shaded area under the curve.
Why would we want to integrate a function? Among the most common ex-
amples are finding the velocity of a body from an acceleration function and
displacement of a body from a velocity function. Throughout many engineering
fields, there are countless applications for integral calculus. Sometimes, these
integrals cannot be found exactly.
The general form of an integral is given by

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥

where,
𝑓(𝑥) is called the integrand,
𝑎 = lower limit of integration,
𝑏 = upper limit of integration

As you can see from Equation (1), we need four inputs to conduct integration.

1. The function 𝑓(𝑥) that needs to be integrated.

CONTENTS

2. The variable with respect to which the function needs to be integrated x.

3. The lower limit of integration a.

4. The upper limit of integration b.

The type of integral that requires all four of these inputs is called a definite
integral. In contrast, the indefinite integral only requires the first two inputs:
the function 𝑓(𝑥) and the variable x. MATLAB can conduct both types of
integration.

How does MATLAB conduct symbolic integra-
tion?

While using MATLAB, several integration functions are available to the pro-
grammer. Depending on the type of integration required, the two main functions
are the int() and trapz(). The int() function is used for integrating continuous
functions (both indefinite and definite), whereas the trapz() function is used
when integrating a discrete function. Both of these functions will be discussed
in this lesson.

Recall from your integral calculus class that when conducting indefinite integra-
tion, a constant (usually “C”) must be added to the solution. Look at Example
1 to see the int() function in use.

Important Note: MATLAB does not automatically add
a constant of integration for an indefinite integral.

Example 1

Use the int() function to evaluate the integrals in parts (a) and (b). Evaluate
both integrals in the same m-file, and use the fprintf() or disp() function to
display the outputs in the Command Window.

a) ∫8.7
2.0 𝑒𝑥 sin(3𝑥)𝑑𝑥

b) ∫ 𝑒𝑥 sin(3𝑥)𝑑𝑥

https://en.wikipedia.org/wiki/Constant_of_integration

CONTENTS

Solution

We will use the int() function to evaluate both integrals. For part (a) there
will be four inputs to the function, and in part (b) we will need two inputs.
Notice that the syms command must be used before the int() function in the
m-file to establish the symbolic variables in the integrand. Because the integral
in part (b) is indefinite, the “+ C” was added to output the most appropriate
solution.

CONTENTS

Can MATLAB do numerical integration of dis-
crete functions?

As mentioned previously, the trapz() function is used when the integrand is
given as discrete data points. An example of when to use the trapz() function
is to integrate a function y given at discrete x-values.

The trapz() function uses numerical integration to find the area under a given
curve. It joins consecutive data points via straight lines. Using this line and the
horizontal axis, a trapezoidal segment (shape) is formed. To do this, the two
vectors x and y to be evaluated must be the same size. For example, 10 data
pairs would create 9 trapezoids. The summation of the area of these trapezoids is
estimated as the value of the integral. This math behind the numerical method
is not required to use trapz(), as the inputs are simply two vectors, but it is
important to understand for any real-world application of the method. Example
2 shows the use of the trapz() function.

Important Note: trapz(x,y) approximates the inte-
gral from min(x) to max(x).

Example 2

Input the x and y data into a new MATLAB m-file.

Table 1: Data pairs to be used for Example 2.

CONTENTS

x y
0 2.01
1 3.97
3 20.2
5 50.95
6 72.76
9 166.5

Plot y vs. x on a standard linear plot where y is the vertical axis and x is the
horizontal axis. Use the trapz() function to find the area under the curve from
x = 0 to x = 9. Output the resulting value using the fprintf() function to the
Command Window.

Solution

Because the data provided is a discrete function, the trapz() function will be
used for the integration. Remember, in order for the trapz() function to work,
the two data arrays must be the same size. In this case, the two vectors both
have 6 elements.

CONTENTS

CONTENTS

Figure 2: Figure of plotted points for Example 2.

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax
Example
Usage

Definite integral of a symbolic function int() int(y,x,a,b)
Indefinite integral of a symbolic function int() int(y,x)
Approximate the area under a curve given by
discrete data points

trapz() trapz(x,y)

Multiple Choice Quiz

(1). The MATLAB function for integration of a symbolic function is

(a) integrate()

(b) diff()

(c) integ()

(d) int()

(2). The output of trapz() is

(a) a mathematical function that is best fit to the given data.

(b) a single number that is the approximate area under the curve.

(c) a symbolic function that is the integral of the input discrete function.

(d) a vector of values.

(3). To find ∫8
4 7𝑒−4𝑥𝑑𝑥, the correct line of code to add to the following program

is

(a) int(7*exp(-4*x),x,4,8)

(b) int(7*exp(-4*x),x,8,4)

(c) int(7exp\^(-4*x),x,4,8)

(d) int(7exp(-4x),x,4,8)

(4). To find∫8
12 (𝑥2 + 2)𝑑𝑥, the correct line of code to add to the following

program is

CONTENTS

(a) int(x\^2+2,x,8,12)

(b) int(x**2,x,8,12)

(c) int(x\^2+2,x,12,8)

(d) int(x\^2+2,x,8,12)

(5). To numerically integrate a discrete function, y calculated as a function of
x from x = 1 to x = 10 using trapezoidal segments, the correct line of code to
add to the following program is

(a) trapz(x,y,1,10)

(b) trapz(y,x,1,10)

(c) trapz(x,y)

(d) trapz(y,x)

Problem Set

Note: In these exercises, if a vector is raised to a power, remember to use the
(.) operator. For example, if you want to square each element of a vector vec,
you will do this by using vec.^2. Similarly, if you want to find the reciprocal
of each element of the vector vec, you will do this by using 1/.vec.We took
similar measures before when plotting in Module 3. The full explanation for
this procedure is contained in the next lesson (Lesson 4.6).

(1). Use the int() function to find ∫8
2 𝑒4𝑥 cos(𝑥)𝑑𝑥

(2). Use the int() function to find∫8.2
3.4 𝑓(𝑥)𝑑𝑥

where

𝑓(𝑥) = { &𝑥2, 0 ≤ 𝑥 < 4,
&𝑥3, 4 ≤ 𝑥 < 10.

(3). Find the vertical distance covered by a rocket from 𝑡 = 8 to 𝑡 = 30 seconds
by solving the integral below.

𝑥 = ∫
30

8
(2000 ln [140000

140000 − 2100𝑡] − 9.8𝑡) 𝑑𝑡

CONTENTS

(4). A company advertises that every roll of toilet paper has at least 250 sheets.
The probability that there are 250 or more sheets in the toilet paper is given by

𝑃(𝑦 ≥ 250) = ∫
∞

250
0.3515𝑒−0.3881 (𝑦−252.2) 2𝑑𝑦.

Find the value of the integral (thus finding the probability) using the int()
function.

(5). Use the trapz() function to find ∫8.6
1.2 𝑧𝑑𝑧, given

𝑧 = ln (𝑟2) 𝑟

(6). A trunnion of diameter 12.363″ has to be cooled from a room temperature
of 80∘𝐹 before it is shrink-fitted into a steel hub (Figure A).

Figure A: The hub and trunnion prior to shrink fitting.
The equation that gives the diametric contraction (in inches) of the trunnion
by immersing it in a dry-ice/alcohol (temperature is −108∘𝐹) mixture is given
by

Δ𝐷 = 12.363 ∫
−108

80
(−1.2278 × 10−11𝑇 2 + 6.1946 × 10−9𝑇 + 6.015 × 10−6) 𝑑𝑇

CONTENTS

Use int() function to find the diametric contraction of the trunnion and the
new trunnion diameter. Output the program results to the Command Window
with a brief description.

(7). Find ∫8.5
3.1 (𝑥3 − 4𝑥2 + 7𝑥)𝑑𝑥 using both the trapz() and int() functions.

Compare the outputs in the Command Window using fprintf() function.
Show at least 6 decimal places for all outputs.

(8). Given the following (x, y) data

(3, 2), (5.4, 4.6), (6.2, 5.1), (7.9, 6.7), (11.0, 8.5), (15.7, 14.0)

Use trapz() function to find ∫15.7
3 𝑦𝑑𝑥.

(9). The error function is defined as 𝑒𝑟𝑓(𝑦) = 2√𝜋 ∫𝑦
0 𝑒−𝑧2𝑑𝑧.

Using a single m-file find the values of erf (0.2), erf (0.5), and erf (3.4). Compare
these three results to the MATLAB output for the error function erf(). Use
the fprintf() function to compare and output the results.

CONTENTS

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.6 – Linear Algebra

Learning Objectives

After reading this lesson, you should be able to:

1) perform linear algebra operations on matrices,

2) solve systems of equations with MATLAB.

Note that the basics of matrices and vectors in MATLAB were covered in Lesson
2.6. We do not repeat them here.

What is linear algebra?

Linear algebra is the set of rules and operations dealing with equations that
contain matrices (for the scope of this book). In this lesson, we review the basics
of linear algebra: how to add, subtract, and multiply matrices and vectors and a
few other common operations. However, our main focus will be on MATLAB. It
is essential to learn these basics since vectors and matrices are very common in
programming for a variety of applications. We have included a primer on linear
algebra in Appendix A in case you need further practice with the fundamentals
of linear algebra. If you do not know how to do the operations discussed in this
lesson on paper, be sure to get up to speed on them. Doing so will save you time
in the long run as programming them requires a fundamental understanding in
most cases.

CONTENTS

Important Note: Remember a vector is a special type of matrix: a
single column or single row matrix. Therefore, everything said about matrices
in this lesson includes vectors as well.

How do I add and subtract matrices?

To add or subtract two matrices, the two matrices have to be the same dimension
(both matrices need to have the same number of rows and columns). Figure
1 shows an example of matrix addition, where two rectangular matrices of size
3 × 2 are added together. Example 1 demonstrates how to perform matrix
addition in MATLAB.

Figure 1: Example of matrix addition. Only the addition of the two elements
is shown in this visual example.

Can I use math functions like sin() on matrices?

As mentioned in previous lessons, to find the sine of each element in a matrix,
just give MATLAB the matrix as an input. That is, if [𝐴] is your matrix, sin(A)
will return a matrix of the sine of each element in [𝐴]. The same is true for
all the trigonometric, exponential, and logarithmic functions. As you can see in
Example 1, the same mathematical functions (sin(), log(), exp(), etc.) can
be used on matrices with no change in syntax.

CONTENTS

Example 1

Input the following two matrices, [𝐴] and [𝐵], into a new m-file.

[𝐴] = ⎡⎢
⎣

1 2 6
2 65 1
4 2 1

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

2 3 4
2 1 45
9 3 6

⎤⎥
⎦
[C] = [

0 𝜋𝜋
2 1]

Conduct the following operations:

a) Add the two matrices [𝐴] and [𝐵]

b) Find the cosine of C(1,1)

c) Find the cosine of all the elements in [𝐶]

Solution

CONTENTS

CONTENTS

How do I perform matrix multiplication?

Unlike addition and subtraction, matrix multiplication is not simply the product
of each set of elements: e.g., A(1,1)*B(1,1). You do not absolutely need to
understand how to do this by hand, but you must understand two resulting
facts:

1. Inner dimensions of a matrix product must be equal: Am×n ×Bn×p . That
is, the number of columns of the first matrix has to be equal to the number
of rows of the second matrix.

2. Matrix products are not commutative. That is, in general, the order of
the two matrices matters ([𝐴]*[𝐵] does not equal [𝐵]*[𝐴]).

CONTENTS

An example of matrix multiplication can be seen in Figure 3, while a full MAT-
LAB code of multiplying two matrices together is shown in Example 3.

Figure 3: An example of matrix multiplication. Only two calculated elements
are shown.

What is the difference between matrix and array
operations?

Array operations performed element-by-element operations to matrices (and
vectors). Matrix operations are traditional matrix algebra operations as outlined
in the previous sections of this lesson and in Appendix A. Array operations have
a dot next to the math operator. For example, A*B would perform a matrix
multiplication of matrix A and B. However, matrix A.*B would multiply each
element of A and B together (not the same answer as you can see in Example
2!), and requires the matrices to have equal dimensions.

Example 2

Input the following two matrices, [𝐴] and [𝐵], into a new m-file.

[𝐴] = ⎡⎢
⎣

1 2 6
2 65 1
4 2 1

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

2 3 4
2 1 45
9 3 6

⎤⎥
⎦

Conduct the following operations:

a) Multiply matrix [𝐴] by [𝐵].

CONTENTS

b) Conduct element to element multiplication of the two matrices [𝐴] and
[𝐵].

Solution

CONTENTS

As you can see, as long as the rules for matrix operations are followed (as given in
Appendix A), adding, subtracting and multiplying matrices requires no different
symbols than from what we are used to for simple scalar operations. However,
recall that matrix division is undefined. To solve this problem, the MATLAB
programmers introduced a function that finds the inverse of a square matrix.

Table 1: Several commonly used matrix functions and operators. The inputs
listed are the matrices [𝐴] and [𝐵] (where applicable).

Operation SyntaxFunction Rules
Addition A+B Adds two matrices. All dimensions must be

equal.
Subtraction A-B Subtracts two matrices. All dimensions must be

equal.
Multiplication
(matrix)

A*B Multiplies two matrices. Inner dimensions must be
equal.

Multiplication
(by
scalar)

5*B A scalar times a matrix. Multiplies each element of
the matrix by the scalar. No
array operator needed.

CONTENTS

Operation SyntaxFunction Rules
Array op-
erations

. Conduct a specified
element to element
operation (see usage
example below).

Depends on usage.

Multiplication
(array)

A.*B Multiplies two matrices
element-by-element.

Matrices must have equal
dimensions. Array operator
required.

Matrix
inverse

inv(A)Outputs the inverse of a
matrix.

Must be a square matrix.

Exponent
(matrix)

A^2 Equivalent to [A]*[A] Must be a square matrix.

Exponent
(array)

A.^2 Raise each element, A(i,j),
to power

Can be any size.

Notice that in Table 1, there is no function to conduct matrix division. This
is because matrix division is not defined for matrices. However, one may also
use the arithmetic division operator with the array (.) operator to conduct
element-by-element division of one matrix by another.

How do I take the inverse of a matrix?

Recall that multiplying a single number (scalar) by its inverse will give a product
equal to one (e.g., 5×5−1 = 1). Similarly, for matrices, multiplying a matrix by
its inverse will yield the identity matrix: all diagonal matrix elements are equal
to “one” and all non-diagonal elements are zero. An example of an identity
matrix is shown in Figure 3. In MATLAB, the inverse of a square matrix can
be found using the function inv(). The inverse of a matrix is a key concept in
linear algebra, so it is important to understand it on a conceptual basis even for
programming.

Example 3

Input the following two matrices, [𝐴] and [𝐵] into an m-file.

[𝐴] = ⎡⎢
⎣

1 2 6
2 65 1
4 2 1

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

2 3 4
2 1 45
9 3 6

⎤⎥
⎦

Conduct the following operations:

https://www.mathworks.com/help/matlab/ref/inv.html?s_tid=srchtitle

CONTENTS

a) Find the inverse of matrix [𝐴], naming it invA. Now, multiply matrix [𝐴]
by invA and examine the resulting matrix.

b) Find the size of matrix [𝐴] and develop an identity matrix of this size,
naming it ‘ID. Multiply matrix [𝐴] by ID and examine the resulting matrix.

Solution

Examining the output of part (a) shows an identity matrix - this is what should
be expected. In part (b) of Example 3, an identity matrix is multiplied to matrix

CONTENTS

[𝐴], and the resulting matrix is the same as matrix [𝐴]. This is also in line with
our expectations.

Can MATLAB do advanced matrix and vector
operations?

There are a significant number of matrix operations available in MATLAB as
predefined functions, and to cover them all would be out of the scope of this
book. A few more common functions are shown in Table 2, and their usage is
shown in Example 4. If you do not see the matrix operation you are interested
in, try searching for the operation in MATLAB Help.

CONTENTS

In Table 2, the functions to conduct a vector dot/cross product can be modified
to work with matrices. To do this operation, an additional input to the function
is required (adding the dimension after the listed inputs). Use the MATLAB
help menu and search the function name for more details (e.g., >>doc max).
The norm() function has several norm types to choose from. For example, Type

1 (i.e., norm(A,1)) is the largest column sum: ‖𝐴‖1 = max
j

(
𝑚

∑
𝑖=1

𝐴𝑖𝑗) , 𝑗 =

1, ..., 𝑛 of an 𝑚 × 𝑛 matrix.
The sort() function can also be modified from what is shown in Table 2 to
numerically sort a vector from the largest number to the smallest by using the
inputs sort(A,'descend'). If the sort() function is used as shown in Table 2,
it will default to sort a matrix from the smallest element to the largest element
(in ascending order).
Table 2: Commonly used matrix functions. The input(s) to the listed functions
is/are a matrix or vector[𝐴] and [𝐵] (where applicable).

Task Syntax Explanation
Vector dot
product

dot(A,B) Outputs the dot product of two vectors of
equal length.

Vector cross
product

cross(A,B) Outputs the cross product of two vectors of
equal length.

Matrix
transpose

A' Finds the transpose of a matrix.

Matrix
Transpose

transpose(A)Finds the transpose of a matrix.

Smallest
element

min(A) Outputs the smallest element in a vector.

Largest element max(A) Outputs the largest element in a vector.
Sort an array sort(A) Sorts a vector from least to greatest.
Matrix
determinant

det(A) Outputs the scalar determinant of a square
matrix.

Norm of a
matrix

norm(A,p) Finds the norm of a matrix.

Trace of a
matrix

trace(A) Outputs the scalar value of the trace of a
matrix

Example 4

Input the following two vectors, [𝐴] and [𝐵], and the matrix [𝐶] into a new
m-file.

CONTENTS

[𝐴] = [2 4 −2] [𝐵] = [0 7 1][𝐶] = ⎡⎢
⎣

0 −3 0
2 5 6
1 0 −13

⎤⎥
⎦

Using the functions listed in Table 2, complete the following:

a) Find the vector cross product of vectors [𝐴] and [𝐵], and name this new
vector crossAB.

b) Find the value of the maximum and minimum element of vector crossAB
from part (a).

c) Find the numeric values of the trace, norm (maximum column sum), and
determinant of matrix [𝐶].

Solution

CONTENTS

CONTENTS

How can I solve systems of equations with MAT-
LAB?

One of the ways we can use MATLAB to harness the power of the computer
is by it solving large systems of equations for us. A set of three equations and
three unknowns may not be terribly hard to solve by hand, but there are many
applications where that number is in the thousands.

To cut down on algebraic manipulation, matrices are commonly used to solve
linear systems of equations. As outlined in Appendix A, to solve any linear
system of equations a programmer must have (1) the coefficient matrix 𝐴, (2)
solution or unknown vector 𝑥, and (3) the right-hand side vector 𝐶. These three

CONTENTS

vectors/matrices are related in the following form [𝐴] ⋅ [𝑥] = [𝐶]. Examples 5
and 6 demonstrate this process in MATLAB.

Example 5

A coworker is having trouble solving a system of 3 equations with 3 unknowns
and has asked for your help. You tell them “I’ll have the system of equations
solved for you before lunch!”

The equations are

𝑧 = 2.1𝑥 + 43.03𝑦 − 54.3𝑧 = −201.0𝑦 + 4.1𝑧 = −𝑥 − 21.65𝑦 − 43.1

Solution

Rewrite the equations so that the unknown variables are on the left side and
the known constants are on the right side:

2.1𝑥 + 43.03𝑦 − 𝑧 = 54.3−201.0𝑦 − 𝑧 = −4.1−𝑥 − 21.65𝑦 − 𝑧 = 43.1

The set of equations can be written in matrix form as

⎡⎢
⎣

2.1 43.03 −1
0 −201.0 −1

−1 −21.65 −1
⎤⎥
⎦

⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

= ⎡⎢
⎣

−54.3
−4.1
43.1

⎤⎥
⎦

This system of equations has been annotated for clarity in Figure 7. Each of
the three arrays (coefficient matrix, solution vector, right-hand side vector) are
labeled.

CONTENTS

Figure 7: Annotated system of equations for Example 5.

Now that the coefficient matrix, the right-hand side, and solution vectors are
found, one can write a program to solve the system of equations. Functions
listed previously in this lesson, such as the inverse function, inv(), are used to
help solve this system of equations.

CONTENTS

CONTENTS

As mentioned above, matrix division is not defined, which is why we used the
inv() function in Example 5. This is categorically true. However, MATLAB
has implemented a more efficient method for solving systems of equations of
the form [𝐴] ⋅ [𝐵] = [𝐶], which does not use the inverse of a matrix. This is of
the form x = A\C or x = mldivide(A,C): these two are equivalent syntax in
MATLAB. Note that these are not replacements for calculating the inverse of a
matrix.

In Example 6, we solve a system of equations (of the form [𝑥] ⋅ [𝐴] = [𝐶]) using
the x = A\C syntax. If you have a system of equations of the form x*A = C,
you should solve using x = A/C. Remember, the order of matrix multiplication
is not commutative, so these two cases require different solutions.

Example 6

The amount of force that is exerted on a body can be determined by measur-
ing the amount that the body displaces, and vice-versa. Ultimately, this force
value can help determine the amount of stress acting on and inside the body or
structure. This method for determining stress is widely used in finite element
modeling and is also applicable to a variety of other systems (heat transfer,
vibration analysis, etc.). Typically, the force and displacement values are mod-
eled as vectors, and they are related to each other through the stiffness matrix.
The relationship of the force, displacement, and stiffness matrices is

[
→
𝐹] = [𝑘] [→𝑥]

CONTENTS

where,
F is the force column vector.
k is the stiffness matrix.
x is the displacement column vector.

For each system, the stiffness matrix is different and is dependent on the mate-
rial properties and the system component geometry in use. Given the stiffness
matrix ([𝑘], lbs/in), find the displacement (inches) of all three components if
each component has a normal force acting on it as listed (use relationship given
above). The element forces are: 9200, 42100, 105630 lbs.

The stiffness matrix is

[𝑘] = ⎡⎢
⎣

2 0.1 0.2
0.1 0.002 2.1
0.2 2.1 0.03

⎤⎥
⎦

× 103 kip/in

Output the maximum value of the displacement vector elements with a brief
description.

Solution

CONTENTS

It is important to note that MATLAB does not account for units, so one must
be very careful when solving engineering problems. This example shows a basic
way to solve a problem that uses the finite element method (FEM). It should
be noted that the element stiffness matrix for most finite element problems is
of very large size, but the matrix operations are essentially the same as shown
in Example 6.

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Solve A*x = C for x mldivide() or \ mldivide(A,C) or A\C
Solve x*A = C for x mrdivide() or / mrdivide(C,A) or C/A
Matrix addition + A+B
Matrix subtraction - A-B
Matrix multiplication * A*B
Array operations . A.*B
Matrix inverse inv() inv(A)
Raise a matrix to a power ^ A^2
Vector dot product dot() dot(A,B)
Vector cross product cross() cross(A,B)
Matrix transpose ' or transpose() A'
Find the smallest element min() min(A)
Find the largest element max() max(A)
Sort an array sort() sort(A)
Matrix determinant det() det(A)
Norm of a matrix norm() norm(A,type)
Trace of a matrix trace() trace(A)

Multiple Choice Quiz

(1). The array operator (.) in MATLAB is used for

CONTENTS

(a) conducting element-by-element matrix operations

(b) conducting matrix multiplication

(c) denoting a decimal point

(d) finding the dot product of vectors

(2). The function to find the determinant of a matrix [𝐴] is
(a) |A|

(b) det(A)

(c) determinant(A)

(d) determ(A)

(3). When subtracting two matrices, the matrices must have

(a) equal inner dimensions

(b) zeros along the diagonal

(c) unequal sizes

(d) equal sizes

(4). Which of the following will give the transpose of a matrix [𝐴] in MATLAB?

(a) trans(A)

(b) transpose(A)

(c) A'

(d) Both b & c

(5). When multiplying two matrices, the matrices must have

(a) equal sizes

(b) zeros along the diagonal

(c) unequal sizes

(d) equal inner dimensions

CONTENTS

Problem Set

(1). Given

[𝐴] = ⎡⎢
⎣

5 2 4
−2 3 1
7 2 −1

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

4 −3
6 2

−4 1
⎤⎥
⎦

[𝐶] = ⎡⎢
⎣

6 9
5 −2
1 4

⎤⎥
⎦

use MATLAB to find

(a) [𝐵] + [𝐶]
(b) [𝐵] − [𝐶]
(c) inverse of [𝐴]
(d) [𝐴][𝐵]
(e) det(𝐴)
(f) [𝐴]𝑇

(g) The square of each element of [𝐴]
(h) The natural log of each element of [𝐴]

(2). Using matrices and MATLAB, solve for the variables x,y,z in the system
of linear equations.

3𝑥 + 5𝑦 − 2𝑧 = 12𝑥 − 2𝑦 + 7𝑧 = 3𝑥 + 8𝑦 − 4𝑧 = −6

Use fprintf() to display the solution to the system of equations. Include a
brief description of the solution as well.

(3). Given that the equation of a line is 𝑦 = 𝑚𝑥 + 𝑏 where m is the slope and
b is the vertical (y-intercept), use matrices to find the equation of the line that
passes through the (x,y) data pairs: (1,6) and (4,10).

(4). Given

[𝑃] =
⎡
⎢⎢
⎣

4 0 −3 7
9 7 4 2
0 1 −9 6
3 2 7 1

⎤
⎥⎥
⎦

CONTENTS

use MATLAB to find the

(a) row and column dimensions using the size() function.

(b) infinity norm of [𝑃]
(c) trace of [𝑃].
(d) inverse of [𝑃], and name the matrix, Q.

For parts (a), (b) and (c), use fprintf() to display the result.
For (d), use disp() to display Q.

(5). Given the two vectors,

→𝜔 = [4 2 7]→𝑟 = [2.5 4 1.3]

use MATLAB to find the

(a) vector dot product.

(b) vector cross product.

(c) sorted vector of →𝑟 , and name the array, rSort.

Use the fprintf() or disp() functions to display the appropriate solution(s).

CONTENTS

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.7 – Curve Fitting

Learning Objectives

After reading this lesson, you should be able to:

1) conduct polynomial interpolation using MATLAB,

2) conduct spline interpolation using MATLAB,

3) regress data to a polynomial using MATLAB.

What is curve fitting?

Data may be given only at discrete data points. Curve fitting implies techniques
to fit a curve to the discrete data and hence be able to find estimates at points
other than the given ones. In this lesson, we will limit our discussion to two very
common categories of curve fitting: interpolation and regression. One important
thing to keep in mind when applying these methods to real-world problems is
that they are estimates, and are therefore not guaranteed to be correct. With
that said, curve fitting can be a powerful tool for analysis and prediction.

CONTENTS

What is interpolation?

Many times, a function, 𝑦 = 𝑓(𝑥) is given only at discrete data points such as,
(𝑥0, 𝑦0) , (𝑥1, 𝑦1) ,, (𝑥𝑛−1, 𝑦𝑛−1) , (𝑥𝑛, 𝑦𝑛). How does one find the value of y
at a value of 𝑥 that is not one of the given ones? Well, a continuous function
𝑓(𝑥) may be used to represent the (𝑛+1) data values with 𝑓(𝑥) passing through
the (𝑛 + 1) points. Then one can find the value of 𝑦 at any other value of 𝑥.
This is called interpolation. Of course, if 𝑥 falls outside the range of 𝑥 values
for which the data is given, it is no longer called interpolation but is called
extrapolation.

How can I interpolate data in MATLAB?

When programming in MATLAB, the programmer has several functions to help
make the difficult task of interpolation an easy one. The two types of interpo-
lation techniques that will be discussed in this lesson are the polynomial and
spline interpolation. The MATLAB functions for these models are polyfit()
and interp1().

CONTENTS

Figure 1: Interpolation of discrete data.

Once the user has input the two vectors of data (x and y, for instance), the
polyfit() function can be used to interpolate the data to a polynomial func-
tion. The polyfit() function stores the coefficients of the polynomial in vector
form, where they can later be used to generate the polynomial interpolation
model. The polyval() function uses polynomial coefficients (the output of the
polyfit() function) to find the interpolated value of y at a chosen value or
vector of x.

For interpolation, the order of the polynomial must be exactly one less than
the total number of data pairs. So for given data (x1, y1) ,…, (xn+1, yn+1), the
polynomial obtained would be of the form y = a1xn + a2xn−1 + … + an.

The polyfit() function is used to output the coefficients of the polynomial that
passes through the data pairs. The output is stored as a vector [𝑎1, 𝑎2, ..., 𝑎𝑛].
With these coefficients, the user can symbolically develop the interpolation func-
tion and if needed, conduct integration, differentiation, and plotting. Note that

CONTENTS

the first element corresponds to the coefficient of the highest power (𝑥𝑛), while
the last element corresponds to the constant of the polynomial model.

The polyval() function takes the output of the polyfit() function and uses it
to evaluate the value of the polynomial interpolant at a given value (or a vector)
of x. That is, polyval() substitutes values for x into the polynomial model.
Then polyval() returns the corresponding values of y (the predictions) from
the polynomial (see Example 1).

Example 1

Using a polynomial model, interpolate the (x, y) data pairs in Table A to a
polynomial. Find the value of the interpolant at x = 4.5 and output it to the
Command Window.

Table A: Data pairs for Example 1.

x 1.0 4.0 8.0
y 2.2 5.0 7.0

Solution

CONTENTS

CONTENTS

We “hardcoded” the polynomial expression in Example 1 for learning efficiency.
This way, you can see how a symbolic function can be manually defined from
its coefficients (the output of polyfit()). See Example 3 for a better method
to do this without hardcoding: poly2sym().

What is spline interpolation?

Spline interpolation uses multiple “spline” (math) functions to fit the given data
points (Figure 2). Taken as a whole, these splines form a piecewise continuous
function: meaning the final model is made up of pieces or splines. Splines can
be based on different models, but are commonly linear (𝑓(𝑥) = 𝑎1𝑥 + 𝑎2) or
cubic (𝑓(𝑥) = 𝑎1𝑥3 + 𝑎2𝑥2 + 𝑎3𝑥 + 𝑎4) polynomial functions.

CONTENTS

How do I conduct spline interpolation?

When compared to polynomial interpolation, using splines to interpolate the
data can prove to be very beneficial in many circumstances. These splines are
typically linear or cubic in form and can be implemented in MATLAB using the
function interp1().
In some cases, especially with higher order polynomials, a polynomial inter-
polant can be a bad idea as it may give oscillatory behavior (Figure 4) for
otherwise well-behaved smooth functions. When provided a large number of
data points, spline interpolation is generally better suited.

Figure 2: Spline interpolation of discrete data.
Often times when interpolating a data set, a linear spline model is sufficient. In
such a case, each data point is connected to the next with a straight line (Figure
2). This technique is commonly used in interpolating data from thermodynamic
steam tables. If this is not sufficient, a cubic spline is often used, which connects
the data points with cubic functions (nonlinear lines as shown in Figure 2). The
MATLAB function, interp1(), can be used to interpolate a data set using a
specified model (including a linear or cubic-spline model). An example of the
usage of this function is: interp1(xData, yData, xQuery, 'method').
The output of the interp1() function is a vector of the same size as the input
vector of the x value(s). We call these input values “x query” values because they
are the values of the independent variable at which we want to make predictions.
For example, when x = 3, what is the value of y? Here, “x = 3” is the query
value. Table 1 shows the common interpolation methods that can be used as the
input for the interp1() function, and Example 2 shows the function in action.
Table 1: Common interpolation models to be used with the interp1() func-
tion.

CONTENTS

Interpolation
Method Interpolation Model Generated
'linear' Interpolates via straight lines between

each consecutive point (default model).
'spline' Connects each point with a cubic-spline

interpolant. The first and second
derivatives of the adjoining splines will be
continuous.

Example 2

Interpolate the (x,y) data pairs from Table B using linear and cubic spline
interpolation. Output the predictions using fprintf() at x = 6.3.

Table B: Data pairs to be used for Example 2.

x 2.0 5.1 7.7 9.2 10.3
y 1.4 3.3 5.7 10.4 12.5

Solution

CONTENTS

The Command Window output shows the predicted y values when x = 6.5.
These values are fairly different from each other (3.593 for linear splines vs. 4.408
for cubic splines). In the next lesson (Lesson 4.8), you will be able to see more
clearly why this is so when we plot the linear and cubic spline functions.

CONTENTS

What is regression?

Finding a function that best fits the given data pairs is called regression. When
conducting interpolation, all data pairs used must be on the developed curve. On
the other hand, a regression curve is not constrained by this requirement. Using
MATLAB to develop a regression curve is useful, especially for experimental
data, or for developing simplified models.

Let us suppose someone gives you n data pairs:(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛), and
you want to develop a relationship between the two variables. A simple example
is that of measuring stress vs. strain data for a steel specimen under loads lower
than the yield point. We expect that the relationship between stress and strain
is a straight line. However, because of material imperfections and inaccuracies
in data collection, we are not going to get all the data points on a straight line.
So, we do the next best thing – draw a straight line that minimizes the sum of
the square of the difference between the observed and predicted values (Figure
3). How that is done is a subject for a course in statistics or numerical methods.

In this part of the lesson, we will just concentrate on how to use MATLAB
to regress data to polynomials. Although there is a mathematical/statistical
difference between polynomial interpolation and regression, there is no explicit
difference in MATLAB syntax between an interpolation and regression polyno-
mial. Therefore, you should choose the curve fitting method that makes the
most sense or gives the best results for your problem.

One of the challenges when fitting some models to a data set is the tendency to

CONTENTS

overfit the data. We will not go into great detail in this lesson, but we want to
alert you to this important and common problem. When performing polynomial
regression, you should try to choose an order for the polynomial that does not
overfit the data.

MATLAB will often display a warning that your polynomial is “badly condi-
tioned” when you are overfitting. Another sign of overfitting is when you have
large deviations from your expected curve (see Figure 4). For example, if you
had position and time data from an accelerating car, you would not expect to
see something like Figure 4 where there is a large deviation from the expected
path. Therefore, thinking critically about your results is essential!

Figure 3: Regression of n data points to best fit a given order polynomial.

Figure 4: An example of overfitting on position and time data from an accel-
erating car (code not shown).

CONTENTS

How do I do regression in MATLAB?

Similar to interpolation, the first step of making a regression model is to deter-
mine the type of function that best fits the data pairs. This lesson will focus on
the polynomial regression model, although many other regression models may
be used. These other models include exponential, power, and saturation growth
models.

To do polynomial regression, you need the following two inputs:

1. Data pairs (x, y)

2. Order of the polynomial of regression, m

For regression, the order of the polynomial chosen must be less than (total
number of data pairs minus one). So for given data pairs (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛), the
polynomial obtained would be of the form 𝑦 = 𝑎1𝑥𝑚 + 𝑎2𝑥𝑚−1 + ... + 𝑎𝑚, 1 ≤
𝑚 ≤ 𝑛 − 2. Note that for m = n − 1 the regression polynomial would be an
interpolating polynomial.

The polyfit() function is used to output the coefficients of the regression
polynomial. The output is stored as a vector [𝑎1, 𝑎2, ..., 𝑎𝑚]. With these coeffi-
cients, the user can symbolically develop the regression function and if needed,
conduct integration, differentiation, and plotting. Note that the first element
corresponds to the coefficient of the highest power (xm), while the last element
corresponds to the constant of the polynomial model.

The function polyval() can be used again for the same purpose as shown in
Example 1. In Example 3, it will take the coefficients of a polynomial and x
query value(s) as inputs and return the predicted value for y, which it obtains
from the regression polynomial.

Example 3

Using MATLAB, regress the given (x, y) data pairs from Table C to a lin-
ear and quadratic regression model, and predict the value of y when x is
(−300, −100, 20, 125) using both models. Output the predictions and the
regression models using fprintf() or disp().

x 340 280 200 120 40 40 80
y 2.45 3.33 4.30 5.09 5.72 6.24 6.47

Table C: Data pairs to be used for Example 3.

Solution

CONTENTS

CONTENTS

CONTENTS

In Example 3, since we are inputting a vector of values to polyval() (using
the variable xQuery), it will return a vector of predictions to us, which can be
seen in the Command Window output. Remembering the inputs and outputs
of these curve fitting functions is essential to proper implementation.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Polynomial
interpolation

polyfit() polyfit(x,y,order)

CONTENTS

Task Syntax Example Usage
Polynomial regression polyfit() polyfit(x,y,order)
Spline interpolation interp1() interp1(x,y,xQuery,'method')
Convert polynomial
coefficients to symbolic
function form

poly2sym() poly2sym(coef,x)

Multiple Choice Quiz

(1). The MATLAB function used to find the coefficients of a polynomial inter-
polation or regression model for given data pairs is

(a) polyfit()

(b) polyval()

(c) interp1()

(d) interceof()

(2). The result of the curve fitting procedure completed in the following
program is

(a) polynomial interpolation

(b) spline interpolation

(c) polynomial regression

(d) None of the above

(3). The output of the last line is

CONTENTS

(a) 2.5
(b) 5.0
(c) 7.0
(d) 10.0

(4). Complete the code to output the regression model as a symbolic function.

(a) coef = polyfit(xd,yd,1);y = coef(2)*x + coef(1)

(b) coef = polyfit(yd,xd,1);y = coef(2)*x + coef(1)

(c) coef = polyfit(xd,yd,1);y = coef(1)*x + coef(2)

(d) coef = polyfit(yd,xd,1);y = coef(1)*x + coef(2)

(5). The function that uses previously found coefficients of a polynomial in-
terpolant as an input to calculate the value of the function at a given point
is
(a) polyfit()

(b) polyval()

(c) interp1()

(d) intereval()

Problem Set

(1). Given are (𝑥, 𝑦) data pairs in Table A.

CONTENTS

Table A: Data pairs for Exercise 1.

x 1.4 2.3 5.0 7.5
y 3.2 1.7 6.1 3.8

Complete the following.
(a) Interpolate the data using a polynomial interpolant. Find the value of y
when x = 4.75.
(b) Interpolate the data using linear spline interpolation. Find the value of y
when x = 4.75.
(c) Interpolate the data using cubic-spline interpolation. Find the value of y
when x = 4.75.

(2). The upward velocity of a rocket is given as a function of time in Table B.
Table B: Upward rocket velocity at a given time.

t (s) 0 10 15 20 22.5 30
v(t) m/s 0 227.04 362.78 517.35 602.97 901.67

Using MATLAB, complete the following.
(a) Using a polynomial interpolant, find velocity as a function of time.
(b) Find the velocity at t = 16 s.

(3). A curve needs to be fit through the seven points given in Table C to
fabricate the cam. The geometry of a cam is given in Figure A.
Each point on the cam shown in Figure A is measured from the center of the
input shaft. Table C shows the x and y measurement (inches) of each point on
the camshaft.

CONTENTS

Figure A: Schematic of cam profile

Table C: Geometry of the cam corresponding to Figure A.

Point x (in) y (in)
1 2.20 0.00
2 1.28 0.88
3 0.66 1.14
4 0.00 1.20
5 -0.60 1.04
6 -1.04 0.60
7 -1.20 0.00

Using MATLAB, find a smooth curve that passes through all seven data points
of the cam. Output this model to the Command Window.

(4). Using MATLAB, regress the following (x, y) data pairs (Table D) to a
linear polynomial and predict the value of y when 𝑥 = 55, 20, −10.
Table D: Data pairs (x, y) for Exercise 1.

x y
325 2.6
265 3.8
185 4.8
105 5.0
25 5.72
– 55 6.4
– 70 7.0

Use the fprintf() and/or the disp() functions to output the regression model
and the predictions to the Command Window.

(5). To simplify a model for a diode, it is approximated by a forward bias model
consisting of DC voltage, Vd, and resistor, Rd. Below is the collected data of
current vs. voltage for a small signal (Table E).

Table E: Current versus voltage for a small signal.

V (volts) I (amps)
0.6 0.01
0.7 0.05
0.8 0.20

CONTENTS

V (volts) I (amps)
0.9 0.70
1.0 2.00
1.1 4.00

Regress the data in Table E to a linear model of the voltage as a function of
current. Approximate the voltage when 0.35 amps of current is applied to the
diode and output this result using fprintf().

(6). To find contraction of a steel cylinder, one needs to regress the thermal
expansion coefficient data to temperature. The data is given below in Table F.

Table F: The thermal expansion coefficient at given temperatures

Temperature, T
(∘𝐹)

Coefficient of thermal expansion, 𝛼
(in/in/∘𝐹)

80 6.47 × 10−6

40 6.24 × 10−6

– 40 5.72 × 10−6

– 120 5.09 × 10−6

– 200 4.30 × 10−6

– 280 3.33 × 10−6

– 340 2.45 × 10−6

Find the coefficient of thermal expansion when the temperature is −150∘𝐹 using

(a) linear polynomial regression,

(b) quadratic polynomial regression, and

(c) cubic spline interpolation.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.8 – Curve Fitting: Plotting the Results

Learning Objectives

After reading this lesson, you should be able to:

1) plot polynomial interpolation and regression models,

2) plot spline interpolation models.

How can I plot the results of curve fitting?

In Lesson 4.7, we covered how to perform some curve fitting methods on discrete
data using MATLAB. In this lesson, we further explore the application of curve
fitting methods by looking at how they can be visualized using MATLAB.

To plot any function, we need to find its value across the domain we want to
plot. To do this for a curve fitting example, the programmer needs a model
that fits the given data pairs, a vector (domain) to plot the model on (query
values), and a vector of predicted values corresponding to the desired domain
of the plot.

From the last lesson, we know that we can use polyval() for both polynomial
interpolation and regression models to find their values at given values of x. Ex-
ample 1 shows how to plot polynomial models that are found using polyfit().
This process does not require any new functions or syntax; although, there are
a few things to watch out for when completing this process on your own. Be

CONTENTS

careful to clearly identify the given values from the predicted ones. Likewise,
always make sure that you are correctly choosing and referencing the x query
values for plotting.

Example 1

Fit a fifth-order polynomial regression model to the data pairs given in Table
A, and plot the resulting model and the given data pairs on one plot. Include
a title, axis labels, and legend.

Table A: The data pairs used in Example 1.

x 0 1 2 3 4 5 6 7 8
y 1.00 0.540 -

0.416
-
0.990

-
0.654

0.284 0.960 0.754 -
0.146

Solution

CONTENTS

CONTENTS

Figure 1: Figure output for Example 1 showing the plot of a regression model.

The raw y data points in Example 1 were generated from 𝑓(𝑥) = cos(𝑥), so
the exact answer for yEstimate would be cos(pi)=-1. We can see that our
estimate is relatively close when comparing the discrete values at cos(pi) (-1
vs. -0.973) and the original data points compared to the regression model we
found (Figure 1). Note that we would not know the function 𝑓(𝑥) = cos(𝑥) in
a real world scenario. If we did, there would be no reason to use curve fitting
methods to find it!

In Example 2, we show an example of plotting spline interpolation models. This
requires less steps than plotting the polynomial models, but the basics are the
same. interp1() returns a vector of values corresponding to the query points,
so we can plot the results directly without any further substitution needed.

CONTENTS

Example 2

Fit linear and cubic-spline interpolation models to the data pairs given in Ta-
ble B, and plot the resulting models and the given data pairs on one plot for
comparison. Include a title, axis labels, and legend.

Table B: The data pairs used in Example 2.

x 0 1 2 3 4 5 6 7 8
y 1.00 0.540 -

0.416
-
0.990

-
0.654

0.284 0.960 0.754 -
0.146

Solution

CONTENTS

Figure 2: Figure output for Example 2 comparing linear and cubic spline
interpolation results.

What are some common mistakes when plotting
curve fitting results?

Some common mistakes made when first learning to perform curve fitting and
plotting the results are:

(1) Plotting the coefficients of a polynomial (the direct output from polyfit())

(2) Using the given x values as the x query values

(3) Plotting the given x values vs. the predicted y values

(4) Using the wrong function: polyfit(), polyval(), interp1()

To elaborate on the mistakes listed above, plotting the coefficients of a polyno-
mial is incorrect as this is not a prediction: it is just part of a polynomial model.
One must substitute x query values into that polynomial to get the predictions
to plot.

Using the given x values as the x query values is incorrect because the whole
purpose of curve fitting is to find out more information than we already know.
Therefore, we should choose x query values for which we do not already know
the corresponding y values.

CONTENTS

Plotting the given x values vs. the predicted y values is wrong because it is
mathematically false. If we predict the value of 𝑦(2.5) with our model, we
cannot then automatically say that 𝑦(2.5) = 𝑦(1), which is exactly what is
happening when you plot predicted y values against an incorrect x domain.
Another symptom of this same problem is when MATLAB returns an error for
the plotted x and y vectors being unequal lengths. This error cannot occur if you
properly calculated and selected your x query and y predicted values. So, that
is where you should start looking if this error occurs when plotting predicted
values.
Finally, keep in mind that we have covered only three functions to do all of the
different interpolation and regression methods. Those functions are polyfit(),
polyval(), and interp1(). polyfit() and polyval() pertain to polynomial
interpolation and regression. For spline interpolation (both linear and cubic-
splines), use interp1().

Multiple Choice Quiz

(1). To plot a polynomial regression or interpolation model, one does not need
to use the function
(a) polyfit()

(b) polyval()

(c) plot()

(d) interp1()

(2). The default output of interp1() is/are
(a) polynomial model coefficients
(b) predicted values corresponding to the provided x query values
(c) a polynomial model in symbolic form
(d) none of the above

(3). Complete the code to prepare the plot of the interpolation model.

CONTENTS

(a) coef = polyfit(x,y,n);yy = polyval(xx,coef);

(b) coef = polyfit(x,y,n);yy = polyval(coef,xx);

(c) coef = polyfit(y,x,n);yy = polyval(xx,coef);

(d) coef = polyfit(y,x,n);yy = polyval(coef,xx);

(4). The output of polyfit() is/are

(a) polynomial model coefficients

(b) predicted values corresponding to the provided x query values

(c) a polynomial model in symbolic form

(d) none of the above

(5). The most appropriate plotting call for visualizing a curve fitting result
(where xGiven = given x values, xPredict = predicted x values, yGiven =
given y values, yPredict = predicted y values) is

(a) plot(xGiven,yPredict)

(b) plot(xQuery,yGiven)

(c) plot(xQuery,yPredict)

(d) plot(xGiven,yGiven)

Problem Set

(1). A curve needs to be fit through the seven points given in Table A to
fabricate the cam. The geometry of a cam is given in Figure A.

Figure A: Schematic of the cam profile

CONTENTS

Each point on the cam shown in Figure A is measured from the center of the
input shaft. Table A shows the x and y measurement (inches) of each point on
the camshaft.

Table A: Geometry of the cam corresponding to Figure A.

Point x (in) y (in)
1 2.20 0.00
2 1.28 0.88
3 0.66 1.14
4 0.00 1.20
5 -0.60 1.04
6 -1.04 0.60
7 -1.20 0.00

Using MATLAB, output a smooth curve that passes through all seven data
points of the cam. Plot this model (with a black line) and the given data points
(with cyan circles) on the same plot. Include a title, axis labels, and legend.

(2). A vegetable processing company has finished their first prototype of a new
carrot cutting tool, and needs your help with the analysis. The device (shown
in Figure B) consists of razor blade attached to a spring loaded hinged arm.
The arm is free to rotate about the hinge from 0∘ to 180∘, as shown. The spring
is fully loaded when the arm is at the 0∘ mark and has a neutral position at the
180∘ mark of the arm.

Figure 3: diagram112e_springloadedcutting

Figure B: Cutting device for Exercise 4.

In a laboratory, the force exerted on the far end of the arm is measured at
several angles as the arm rotates about the hinge. The results are recorded in
Table B.

Table B: Measured force at a given angle.

CONTENTS

Angle (∘) 0.0 20.5 70.1 160.5 180.0
Force (lbs) 12.20 10.56 7.65 2.01 0.00

If the arm (C) measures 8.75 inches from the hinge to the razor, plot the torque
(ft-lbs) exerted by the spring as the arm swings from the fully-loaded to fully-
neutral position (use a cubic-spline interpolation model). Also, predict the value
of the torque once the arm has swung 90∘.

Hint: Torque = Force × Arm length. Be aware of the units.

(3). To maximize a catch of bass in a lake, it is suggested to throw the line
to the depth of the thermocline. The characteristic feature of the thermocline
is the sudden change in temperature. We are given the temperature vs. depth
data for a lake in the table below (Table C).

Table C: Water Temperature at a given depth.

Temperature, 𝑇 (∘𝐶) Depth, 𝑧 (𝑚)
19.1 0
19.1 -1
19.0 -2
18.8 -3
18.7 -4
18.3 -5
18.2 -6
17.6 -7
11.7 -8
9.9 -9
9.1 -10

Conduct polynomial and cubic spline interpolation on the data, and plot the
two interpolants. From the plot, can you judge where the sudden change in
temperature is taking place?

(4). Using MATLAB, regress the following (x, y) data pairs (Table D) to a
linear polynomial and predict the value of y when 𝑥 = 55, 20, −10.
Table D: Data pairs (x, y) for Exercise 1.

x y
325 2.60

CONTENTS

x y
265 3.80
185 4.80
105 5.00
25 5.72
-55 6.40
-70 7.00

Use the fprintf() and/or the disp() functions to output the regression model
results to the Command Window. Plot the regression model with data points
(given and predicted) on a (x, y) linear plot.

(5). To find contraction of a steel cylinder, one needs to regress the thermal
expansion coefficient data to temperature. The data is given below in Table E.

Table E: The thermal expansion coefficient at given temperatures

Temperature, 𝑇 (∘𝐹) Coefficient of thermal expansion, 𝛼(in/in/∘𝐹)
80 6.47 × 10−6

40 6.24 × 10−6

-40 5.72 × 10−6

-120 5.09 × 10−6

-200 4.30 × 10−6

-280 3.33 × 10−6

-340 2.45 × 10−6

Fit the above data to 𝛼 = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇 2. Plot the regression model along
with the given data points on one plot. Include a grid, axis labels, and a legend.

Module 4: MATH AND
DATA ANALYSIS

Lesson 4.9 – Ordinary Differential Equations

Learning Objectives

After reading this lesson, you should be able to:

1) solve an ordinary differential equation using MATLAB.

What is a differential equation?

An equation that consists of derivatives is called a differential equation. Dif-
ferential equations have applications in all areas of science and engineering. A
mathematical formulation of most physical and engineering problems leads to
differential equations. So, it is important for engineers and scientists to know
how to set up differential equations and solve them. Differential equations are
of two types:

1. ordinary differential equations (ODE) and

2. partial differential equations (PDE).

An ordinary differential equation is that in which all the derivatives are with
respect to a single independent variable. Examples of ordinary differential equa-
tions include:

CONTENTS

a. 𝑑2𝑦
𝑑𝑥2 + 2 𝑑𝑦

𝑑𝑥 + 𝑦 = 0, 𝑑𝑦
𝑑𝑥(0) = 2, 𝑦(0) = 4,

b. 𝑑3𝑦
𝑑𝑥3 + 3 𝑑2𝑦

𝑑𝑥2 + 5 𝑑𝑦
𝑑𝑥 + 𝑦 = sin𝑥, 𝑑2𝑦

𝑑𝑥2 (0) = 12 𝑑𝑦
𝑑𝑥(0) = 2, 𝑦(0) = 4

c. 𝑑2𝑦
𝑑𝑥2 − 5𝑦 = 6(100 − 𝑥), 𝑦(0) = 5, 𝑦(100) = 27

Ordinary differential equations are classified in terms of order and degree. The
order of an ordinary differential equation is the same as the highest derivative
and the degree of an ordinary differential equation is the power of the highest
derivative. Thus, the differential equation,

𝑥3 𝑑3𝑦
𝑑𝑥3 + 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥 𝑑𝑦
𝑑𝑥 + 𝑥𝑦 = 𝑒𝑥

is of order 3 and degree 1, whereas the differential equation

(𝑑𝑦
𝑑𝑥 + 1)

2
+ 𝑥2 𝑑𝑦

𝑑𝑥 = sin𝑥

is of order 1 and degree 2.

How do I set up and solve a differential equation?

An engineer’s approach to differential equations is different from that of a math-
ematician. While the latter is interested in the mathematical solution, an en-
gineer should be able to interpret and implement the result physically. So, an
engineer’s approach can be divided into three phases:

1. formulation of a differential equation from a given physical situation,

2. solving the differential equation using given conditions, and

3. interpreting the results physically for implementation.

To solve a differential equation, we need

1. the differential equation, deq,

2. the initial/boundary condition(s), IV, and

3. the independent variable, x.

In MATLAB, the function to solve an ordinary differential equation exactly is
dsolve(). A usage example is dsolve(deq,IV,x). The number of initial or
boundary conditions needed is the same as the order of the differential equation.

CONTENTS

Example 1

Analytically solve the following differential equation using MATLAB.

2 𝑑𝑦
𝑑𝑥 = −3𝑦 + 5𝑒𝑥, 𝑦(0) = 5

Solution

CONTENTS

Note in Example 1 that the 𝑑𝑦
𝑑𝑥 part of the equation is entered as diff(y,x).

This is possible because we have defined the symbolic function y(x). Therefore,
both y and x are defined as symbolic variables in MATLAB. Also, note the
use of the double equals (==) to separate the left- and right-hand sides of the
differential equation. Recall that we used this same syntax when entering a
left- and right-hand side of an equation when solving for its roots in Lesson 4.3.
This must be done as MATLAB always associates a single equals sign (=) with
assigning a value to a variable, which we have already done at the beginning of
that line (deq =). In other words, when entering an equation with a left- and
right-hand side, use double equals.
The simplify() function, in Example 1, is used to make the output aesthet-
ically pleasing. It will try to algebraically simplify a mathematical expression
that you give it as an input. Look at the code without simplify() to see the
difference!

How do I solve a higher order ODE?

The dsolve() function is used to solve ordinary differential equations of all
orders. However, you must make sure to place all the initial and boundary
conditions correctly into the function. Look at Example 2 that shows how to
solve a typical second order ordinary differential equation.

Example 2

Using the dsolve() function, solve the following ordinary differential equation.

3 𝑑𝑦

𝑑𝑥2 + 5 𝑑𝑦
𝑑𝑥 + 7𝑦 = 11𝑒−13𝑥, 𝑦(0) = 19, 𝑑𝑦

𝑑𝑥 = 17

Solution

CONTENTS

When inputting the equation, look at how the 𝑑2𝑦
𝑑𝑥2 part of the equation is en-

tered as diff(y,x,2). Other than that, the only changes made to the dsolve()
function when compared to Example 1 are the number of initial values used to
solve the differential equation. Since this ODE is second order, we require two
initial values.

The solution to this differential equation is rather long, and one can see that
using MATLAB to solve it saved some time and effort.

CONTENTS

What are the limitations of using the dsolve()
function?

As a programmer, one of the main pitfalls that you may experience is that
the dsolve() function may not output a solution to a given differential equa-
tion. The dsolve() function uses symbolic manipulations to solve differential
equations, and although very advanced, the algorithm cannot solve all ordinary
differential equations (most do not have explicit solutions). You may receive
this warning message in the Command Window:

Warning: Unable to find explicit solution.

If this is the case, solve the differential equation using a numerical method. Two
(of the many) MATLAB functions that numerically solve a differential equation
are ode45() and ode23(). For more information on using these functions, use
the MATLAB documentation.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Solve a differential equation
analytically

dsolve() dsolve(deq,IV,x)

CONTENTS

Numerically solve a
differential equation

ode45() ode45(deq,tspan,IV)

Numerically solve a
differential equation

ode23() ode23(deq,tspan,IV)

Multiple Choice Quiz

(1). The MATLAB function for solving an initial value ordinary differential
equation is

(a) ode()

(b) diff()

(c) dsolve()

(d) diffsolve()

(2). The most appropriate choice for defining the following differential equation

7𝑑𝑦
𝑑𝑡 + 3𝑦 = 4, 𝑦(0) = 2

for use with the dsolve() function is

(a) deq = 7diff(y,x) + 3*y == 4

(b) deq = 7Dy + 3y == 4

(c) deq = 7* diff(y,x) + 3*y == 4

(d) deq = 7diff(y,x) + 3*y = 4

(3). Complete the code to solve the initial value ordinary differential equation.

(a) dsolve(eqn1,inCond1,'x')

(b) dsolve(eqn1,inCond1,x)

CONTENTS

(c) dsolve(eqn1,inCond1,'y')

(d) dsolve(inCond1,eqn1,'x')

(4). To solve

𝑑2𝑦
𝑑𝑥2 = 5𝑥(30 − 𝑥), 𝑦(0) = 5, 𝑑𝑦

𝑑𝑥(30) = 7

the most appropriate MATLAB line of code to add to the following program is

(a) dsolve(diff(y,x,2) == 5*x*(30-x), IV, x)

(b) dsolve(diff(y,x,2) == 5*x*(30-x), IV, 'y')

(c) dsolve(D2y == 5*x*(30-x), IV, 'x')

(d) dsolve(D2y == 5*x*(30-x), IV)

(5). A MATLAB function that finds the numerical solution to an ordinary
differential equation is

(a) ode45()

(b) oda555()

(c) dsolve()

(d) trapz()

Problem Set

(1). Solve the following initial value differential equation in MATLAB.

3 𝑑𝑦
𝑑𝑥 + 6𝑦 = 𝑒−𝑥, 𝑦(0) = 6

.

Find 𝑦(10).

CONTENTS

(2). Solve the following initial value differential equation in MATLAB.

7 𝑑2𝑦
𝑑𝑥2 + 11 𝑑𝑦

𝑑𝑥 + 13𝑦 = sin(𝑥), 𝑦(0) = 6, 𝑦′(0) = 17

Find 𝑦(10) and 𝑦′(10). Plot 𝑦 as a function 𝑥from 𝑥 = 0 to 𝑥 = 20.

(3). Solve the following boundary value differential equation in MATLAB.

𝑑2𝑦
𝑑𝑥2 − 3 × 10−6𝑦 = 7.5 × 10−7(100 − 𝑥), 𝑦(0) = 0, 𝑦(100) = 0

Find 𝑦(15), and the maximum value of 𝑦.

(4). A ball bearing at 1200𝐾 is allowed to cool down in air at an ambient tem-
perature of 300𝐾. Assuming heat is lost only due to radiation, the differential
equation for the temperature of the ball is given by

𝑑𝜃
𝑑𝑡 = −2.2067 × 10−12 (𝜃4 − 81 × 108) , 𝜃(0) = 1200𝐾

where 𝜃 is in 𝐾 and 𝑡 in seconds. Using MATLAB, find the temperature, the
rate of change of temperature, and the rate at which heat is lost at 𝑡 = 480
seconds. The rate at which the heat is lost (in Watts) is given by

Rate at which heat is lost = 2.42 × 10−10 (𝜃4 − 81 × 108)

(5). Pollution in lakes can be a serious issue as they are used for recreational use.
One is generally interested in knowing that if the concentration of a particular
pollutant is above acceptable levels. The differential equation governing the
concentration of pollution in a lake as a function of time is given by

25 × 106 𝑑𝐶
𝑑𝑡 + 1.5 × 106𝐶 = 0

If the initial concentration of the pollutant is 107parts/𝑚3, and the acceptable
level is 5 × 106parts/𝑚3, how long will it take for the pollution level to decrease
to an acceptable level? Plot the concentration of the pollutant as a function of
time from the initial time to the time it takes the pollution level to decrease to
the acceptable level.

CONTENTS

(6). The speed (rad/s) of a motor without damping for a voltage input of 20 V
is given by

20 = (0.02) 𝑑𝑤
𝑑𝑡 + (0.06)𝑤

If the initial speed is zero (𝑤(0) = 0) , what is the speed of the motor at 𝑡 = 0.8𝑠?
What is the angular acceleration of the motor at 𝑡 = 0.8𝑠.

(7). For a solid steel shaft to be shrunk-fit into a hollow hub, the solid shaft
needs to be contracted. Initially at a room temperature of 27 𝑜𝐶, the solid
shaft is placed in a refrigerated chamber that is maintained at −33 𝑜𝐶. The
differential equation governing the change of temperature of the solid shaft 𝜃 is
given by

𝑑𝜃
𝑑𝑡 = −5.33 × 10−6 (−3.69 × 10−6𝜃4 + 2.33 × 10−5𝜃3 + 1.35 × 10−3𝜃2

+5.42 × 10−2𝜃 + 5.588) (𝜃 + 33)

Using MATLAB, find the temperature and the rate of change of temperature
after the steel shaft has been in the chamber for 12 hours.

CONTENTS

Module 5: CONDITIONAL
STATEMENTS

Lesson 5.1 – Conditions and Boolean Logic

Learning Objectives

After reading this lesson, you should be able to:

• identify different relational operators,

• construct logical expressions,

• perform data type identification with MATLAB functions,

• round up, round down, and round numbers to integers.

What are conditions?

Conditions are simply logical expressions: they are not unique to programming.
You are likely familiar with relational operators like <, ≤, >, etc. (although
the syntax may be slightly different in MATLAB). This is the basic syntax we
use to create conditions in MATLAB. These conditions are either true or false.
Either 4 < 5 (four is less than five) or it is not. Note the last two operators
seen in Table 1 can also be used with non-numeric values like text. That is, you
cannot ask if one word is quantitatively greater than another, but you can ask
if they are the same word or not. Note the conditional operator for comparing
two values to see if they are equal (==) is not the same as setting a variable
equal to a value (=).

https://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html

CONTENTS

Table 1: Relational operators in MATLAB and what they mean.

Logical Query Relational Operator
Is A greater than ‘B? A > B
Is A greater than or equal to B? A >= B
Is A less than B? A < B
Is A less than or equal to B? A <= B
Is A equal to (the same as) B? A == B
Is A not (the same as) B? A ~= B

Important Note: Beware of “==” and “=”. MATLAB treats them
differently, and it will not always warn you of your mistake.

In Example 1, you can see some examples of these relational operators. They
return logical values (true or false), which we will discuss in more detail later
in this lesson.

Example 1

Given two variables a and b, conditionally check whether

a) a is less than b,

b) a is equal to b, or

c) a is not equal to b.

You may assume that a and b each store a value that is a real number.

Solution

https://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html

CONTENTS

In the last part of the solution, we convert the native output of a logical compar-
ison into a more readable format using the MATLAB function string(). Ob-
serving the program outputs shown in Command Window reveals that a logical
comparison like a < b has a messy output, which includes the tag "logical".
To convert this output to something more readable we use string().

CONTENTS

What is Boolean logic?

Boolean values of 1 and 0, or true and false, respectively, represent a new
data type in MATLAB called the logical data type. These values are binary
(meaning they only have the two possibilities) and will act as such in all cases.

Conditional clauses (expressions that evaluate as true or false like 4 < 5 or 0
== 1) can be stacked together with conditional-linking operators. That is, we
can combine these conditional statements. We will cover the two most common
condition-linking operators: AND and OR. Just like we use the conjunctions “and”
and “or” in speech/language to join independent clauses, we must use them to
join two or more conditions together in conditional expressions. Note that in
Example 2 the conditional-linking operator is AND (represented by “&&”) and OR
(represented by “||”).

• AND (&&): Both condA && condB must be true for the overall condition to
be true.

• OR (||):Either condA || condB can be true for the overall condition to be
true.

https://www.mathworks.com/help/matlab/ref/true.html
https://www.mathworks.com/help/matlab/ref/false.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/or.html

CONTENTS

When using the && comparison, all logic tests joined by the & must be true for
the body of an if-statement to execute. For example, 3>2 && 7>8 would not
execute the body of an if-statement. However, when the || comparison is used,
only one of the joined tests must be true to execute the body. For instance, 3>2
|| 7>8 would execute the body of the if-statement. Finally, (3>2 && 7>8) ||
1<=2 would evaluate as true since 1<=2 is true! This is an example of linking
Boolean operators together, which is perfectly valid. As a side note, you can
use logical() to convert numeric values to the logical data type in MATLAB.
This might be especially useful when converting a matrix with numerical values
to logical values.

Example 2

Given the variables, a = 6 and b = 3.4, conditionally check whether a is greater
than 1 and less than 5 and whether b is greater than 10 or equal to 3.4.

Solution

https://www.mathworks.com/help/matlab/ref/logical.html?searchHighlight=logical&s_tid=doc_srchtitle

CONTENTS

Can different data types be identified in MAT-
LAB?

As you have likely experienced by now, data types must be handled with care.
As a result, it can be useful to conditionally check the data type of a variable.
MATLAB has handy functions for just such a purpose that return a Boolean
value, which has a logical data type, of course. (We covered these previously in
Lesson 2.5 (Data Types), and include them again here for clarity.)

These are called the data type identification functions, and some examples in-
clude testing whether a number is real or imaginary with isreal() or whether
the value of a variable is a character data type with ischar().

Example 3

Check whether a variable is a char data type or not. Output the class (data
type) of the variable to the Command Window.

Solution

https://www.mathworks.com/help/matlab/data-type-identification.html
https://www.mathworks.com/help/matlab/ref/isreal.html
https://www.mathworks.com/help/matlab/ref/ischar.html

CONTENTS

How can I round numbers in MATLAB?

Rounding functions can be very useful in writing effective conditions as we
will demonstrate in the following lessons. First, though, we need to know the
different rounding functions and how they work. Below is a list of the three
most common rounding functions in MATLAB and what they do. You can see
each of these functions implemented in MATLAB in Example 4.

• round(): returns the nearest integer (“normal” rounding)

– Example: round(1.5) = 2
– Example: round(1.1) = 1

• ceil(): returns the smallest integer that is greater than or equal to the
number

– Example: ceil(1.1) = 2
– Example: ceil(1.7) = 2

• floor(): returns the greatest integer that is less than or equal to the
number

http://www.mathworks.com/help/matlab/ref/round.html?s_tid=srchtitle
http://www.mathworks.com/help/matlab/ref/ceil.html?s_tid=srchtitle
http://www.mathworks.com/help/matlab/ref/floor.html?s_tid=srchtitle

CONTENTS

– Example: floor(1.3) = 1
– Example: floor(1.9) = 1

Example 4

Show an example of how the MATLAB functions round(), ceil(), and floor()
each round numbers.

Solution

Lesson Summary of New Syntax and Program-
ming Tools

CONTENTS

Task Syntax Example Usage
Boolean AND operator && a && b
Boolean OR operator || a || b
Round a number to the nearest integer round() round(a)
Round a number up to the nearest integer ceil() ceil(a)
Round a number down to the nearest integer floor() floor(a)
Check if a variable is a char data type or not ischar() ischar(a)
Check if a variable is a real number or not isreal() isreal(a)
Determine if A is greater than B > A > B
Determine if A is greater than or equal to B >= A >= B
Determine if A is less than B? < A < B
Determine if A is less than or equal to B <= A <= B
Determine if A is equal to (the same as) B == A == B
Determine if A is not (the same as) B ~= A ~= B

Multiple Choice Quiz

(1). The ~= operator stands for

(a) approximately equal to

(b) equal to

(c) greater than or equal to

(d) not equal to

(2). sin(pi)==0 gives false as output because

(a) sin(pi)=1

(b) sin(pi)=-1

(c) sin(pi) is not defined

(d) sin(pi) gives a value other than zero in MATLAB

(3). The operator || stands for

(a) and

(b) or

(c) not

(d) not equal to

CONTENTS

(4). The operator && stands for

(a) and

(b) or

(c) not

(d) not equal to

(5). What is the Command Window output of the following program?

(a) a = 60.6

(b) a = 44

(c) a = 60

(d) a = 66

Problem Set

(1). Write a condition that evaluates as true when the given variable length is
greater than 1.5. Test your condition using length = 1 and then using length
= 3.

(2). Write a condition that evaluates as false whenever the given variable age
is less than 21. Test your condition using age = 6 and then using age = 30.

(3). Write a condition that evaluates as false when base is equal to 5. Test
your condition using a) base = 0.2 and b) base = 5.

(4). Write a set of conditions that evaluates as true when the rounded value
of the given variable num is greater than 16 and less than or equal to 21. Test
your condition using a) num = -8 and b) num = 17.

(5). Write a set of conditions that evaluates as true when the given variable
flag1 is equal to 2 or 3. Test your condition using a) flag1 = 2 and b) flag1
= 0.

CONTENTS

(6). An instructor wants to round up students’ grades to the next integer. Write
a program that takes students’ grades as an input and returns the integer grades
as an output. Hint: you will need to use a vector as the input/output.

Module 5: CONDITIONAL
STATEMENTS

Lesson 5.2 – Conditional Statements: if and if-
else

Learning Objectives

After reading this lesson, you should be able to:

• construct logical expressions,

• use if statements to make conditional checks,

• use an if-else statement,

• make conditional checks if the statement is true or false,

• program conditional statements with Boolean logic and multiple expres-
sions.

So far in this text, we have considered only the basic control structure of a
sequence. Sequence structure simply implies that statements are executed from
the beginning to the end in a sequence. In this lesson, we introduce you to the
control structure of conditions. This means that a programmer may want only
a certain body of statements executed if a certain condition is true, and some
other body of statements to be executed if that condition is false.

CONTENTS

What is a conditional statement?

The conditional statement is one of the fundamental programming concepts.
The conditional statement runs/executes a block of code if its condition is true.
If its condition is false, that block of code will not execute. This is different
than the conditional expressions (Boolean logic) we learned in Lesson 5.1. Con-
ditional statements, when true, execute a block of code they contain (see Figure
1), while conditional expressions describe what makes them true (see Example
1).

For example, we might want to display a message that says whether a given
number is above 10 (x > 10) or below 10 (x < 10). Obviously, the number
cannot be both above and below 10, so we would need to display these messages
conditionally.

There are two general types of conditional statements in MATLAB: if and
switch statements. We will cover only the if statement since it is the most
popular and versatile, but a very similar logic, applies to switch statements if
you are curious. The if statement can be extended with the conditional clauses
of else and elseif, which we will cover in this and the following lesson (Lesson
5.2).

What is the if statement?

An if statement is the simplest complete conditional statement. It needs only
one condition, one line of code in the body, and an “end” to be complete. The
logic test or expression is a condition which the if statement checks. The body
is code that you want MATLAB to execute if the condition(s) is/are true. The
body is defined by the lines of code between the if and end statements in the
if-end conditional statement.

Figure 1: Demonstrates the concept behind conditionally executing a block of
code.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/switch.html
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/switch.html
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

Once the if-end statement has reached the end, the rest of program will con-
tinue from the lines of code below the end of the if-end statement. In its
simplest form, the if-end conditional statement has four main components.
These are

1. the statement if

2. the logic test(s),

3. the body of the statement, and

4. the ending statement, end.

In Example 1, we use an if statement with a conditional expression. Here, we
use one of the rounding functions we covered in Lesson 5.1 to design a conditional
expression that fits our problem. Note that in Example 1 the disp() function
will not be executed if the number is not an integer.

Example 1

Given a real number num, write a MATLAB program that displays, “The number
is nonnegative”, if the input number is nonnegative (a number is nonnegative
if it is zero or positive), or “The number is negative” if the input number is
negative. Run and test your program twice, using values of -4.5 and 6.3. Use
only if-end statements.

Solution

The program uses two if-end statements, the first checks if the input number
is positive, and the second checks if the input number is negative. When writing
the program for this example, one must be careful so as not to create a situation
where both statements are true. Notice the difference in logic tests between the
two statements.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/disp.html

CONTENTS

The Command Window output for Example 1 when num = -4.5 is shown next.

The Command Window output for Example 1 when num = 6.3 is shown next.

CONTENTS

What is the if-else statement?

The else conditional clause introduces a new component to a conditional state-
ment. Note, else is not a stand-alone component. If used, it must always follow
an if statement. Its function is just as it reads: if this condition is true, run
this block of code; else, run this other block of code. Therefore, for the else
block of code to run, the if condition must be false. This concept can be seen
in Figures 2 and 3.

Figure 2: Flowchart of an if-else conditional statement.

Figure 2 shows a more conceptual representation of an if-else conditional state-
ment, while Figure 3 is more of a coding representation (similar to pseudocode).
We will go into more detail about flowcharts and pseudocode in Module 6.

Figure 3: Shows how each conditional clause (if and else) each has its own
block of code.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

Important Notes:

• else is not a stand-alone clause: it must always follow if.

• For the else block of code to run, the if clause must be false.

• There is only one end per conditional statement as seen in Figure 3. One
end per if: NOT if-end-else-end.

In Example 2, we add the else or “otherwise” case, which lets us give the user
more information in case the if statement is false. For instance, in Example 1,
all we could do was to output a message when the if statement was true. Now,
we can execute a block of code when the given number is a nonnegative integer
and execute another (different) block of code when the number is negative.

Example 2

Given a real number num, write a MATLAB program that displays, “The number
is nonnegative”, if the input number is nonnegative (a number is nonnegative
if it is zero or positive), or “The number is negative” if the input number is
negative. Run and test your program twice, using values of -4.5 and 6.3.
Unlike Example 1, where you were only allowed to use if-end statements, use
only the if-else-end statement(s).

Solution

Although the output is the same as that of Example 1, this m-file is slightly
shorter. This is because MATLAB only needs to conduct one logic test here as
opposed to conducting two logic tests in Example 1.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

As you can see in Example 2, only the body of the if statement is executed.
Once a conditional clause evaluates as true, the block contained is run and then
the whole conditional clause is exited. This means else is not considered nor is
its code block executed. This is another way of saying the if condition(s) must
be false for else to run.

The Command Window output for Example 2 when num = -4.5 is shown next.

The Command Window output for Example 2 when num = 6.3 is shown next.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

Important Note: Because a condition cannot be simultaneously true
and false, an if-else statement, only the if or the else block runs: never
both.

Can I use multiple conditions in a single expres-
sion?

We saw how to join two conditional expressions together in Lesson 5.1 with
Boolean logic using AND (&&) and OR (||). Now we will look at how to use
multiple conditional expressions in a single if statement.

In Example 3, we use multiple conditional expressions in an if statement, which
allows us to remove the assumption that the variable holds a number. Try it
yourself with a char data type and see what happens!

Example 3

Write a program that checks if a variable is a numeric data type and an integer.
Display the result to the Command Window.

Solution

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/and.html
https://www.mathworks.com/help/matlab/ref/or.html
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

In Example 3, we use two compounded conditional statements joined by an
AND (&&) operator. In Example 4, we provide a usage case of the Boolean
operator OR (||).

Example 4

In 1998, the federal government introduced the body mass index (BMI) to de-
termine healthy weights. Body mass index is calculated as 703 times the weight
in pounds divided by the square of the height in inches of the individual. The
obtained number is then rounded off to the nearest whole number. The criterion
for a healthy weight is given as follows.

• BMI < 19 - Unhealthy weight

• 19 ≤ 𝐵𝑀𝐼 ≤ 25 - Healthy weight

• BMI > 25 - Unhealthy weight

Write a MATLAB program that outputs, based on the above criterion, if an
individual has a healthy or unhealthy weight. The program inputs are the
person’s weight in pounds and height in inches.

Solution

A person’s BMI is calculated by the formula:

BMI = weight (lbs)
[height (in)]2 × 703

The steps in the algorithm are:

1. Enter the person’s weight in lbs and height in inches.

2. Calculate BMI using, BMI = weight (lbs)
[height (in)]2 × 703

3. If BMI not in the range of 19 and 25, then the person has an unhealthy
weight, else the weight is healthy.

CONTENTS

A Note on Writing Good Conditional Statements

As we have previously discussed in Lesson 2.1, mixing double negatives and
Boolean values is a bad practice and adds unnecessary complexity in the long
run (“ain’t no good”). If you are using variable names inside your conditions,
make sure you follow this rule. You can see a detailed explanation in that lesson
if you need a review.

Lesson Summary of New Syntax and Program-
ming Tools

CONTENTS

Task Syntax Example Usage
Conditionally execute a
single block of code

if if 3<5; disp('T');
end

Conditionally execute
code for both the true and
false cases of the condition

else if 3>5; disp('T');
else disp('F');
end

Use the Boolean AND
operator

&& a && b

Use the Boolean OR
operator

|| a || b

Multiple Choice Quiz

(1). What is the Command Window output of the following program?

(a) 5

(b) 6

(c) 10

(d) 11

(2). What is the Command Window output of the following program?

(a) 5

CONTENTS

(b) 6

(c) 10

(d) 11

(3). What is the Command Window output of the following program?

(a) 1

(b) 2

(c) 3

(d) 79

(4). What is the Command Window output of the following program?

(a) 3

(b) 5

(c) 6

(d) 20

(5). What is the Command Window output of the following program?

CONTENTS

(a) 3

(b) 5

(c) 6

(d) 20

Problem Set

(1). Using only conditional statements, write a MATLAB program that deter-
mines if any input number, inputNum, is an integer or a decimal number. The
program output is “The input number is an integer” or “The input number is
a decimal number”.

(2). Using only conditional statements, write a MATLAB program that deter-
mines if an integer is even or odd. Display a message to the Command Window
telling the user whether the integer is even or odd.

(3). The United States House of Representatives has 435 members. For a bill
to pass the house, a simple majority (50% or more) of members have to vote
in favor of the bill. Write a program given the variable yes that appropriately
outputs either “The bill passed!” or “The bill did not pass!” to the Command
Window.

(4). A student’s grade is based on their score in four categories: homework,
projects, tests, and final exam. The weight of each category and the student’s
scores are given in Table A.

Table A: Student grade information.

Category Weight Example Scores
Homework 10% 88
Projects 12% 95

CONTENTS

Category Weight Example Scores
Tests 48% 76
Final exam 30% 91

Write a program that calculates the overall percentage grade of a student.
Round up the overall percentage grade to the next integer. Determine if a
student has passed or failed the course if the passing grade is 70% or higher.

Use the example case given in Table A to test your solution.

(5). A simply supported beam is loaded as shown in Figure A. Under the applied
load, the beam will deflect vertically. This vertical deflection of the beam V will
vary along the length of the beam from x = 0 to L and is given by

𝑉 =
⎧{
⎨{⎩

𝑃𝑏
6𝐸𝐼𝐿 [(−𝐿2 + 𝑏2)𝑥 + 𝑥3] , 0 < 𝑥 < 𝑎

𝑃𝑏
6𝐸𝐼𝐿 [(−𝐿2 + 𝑏2)𝑥 + 𝑥3 − 𝐿

𝑏 (𝑥 − 𝑎)3] , 𝑎 < 𝑥 < 𝐿

where,

• x is the distance from the left end,

• P is the load,

• L is the length of the beam,

• a is the location where the load P is applied,

• E is Young’s modulus of the beam material, and

• I is the second moment of area.

CONTENTS

Figure A: Simply supported beam shown with applied load, P.

Write a MATLAB program that outputs the vertical deflection of the beam at a
point of interest. Display all of the inputs and outputs by using the fprintf()
function complete with explanation and reasonable format.

The program inputs, as entered by input() functions, are

1. distance from the left end to the point of interest, x,

2. length of the beam, L,

3. load, P,

4. the location where the load P is applied, a,

5. Young’s modulus of the beam material, E, and

6. the second moment of area, I,

and output is

1. the calculated deflection, V

Run your program for the following two input sets. You will need to run the
m-file twice: once for each of the two input sets.

1. 𝑥 = 2.50, 𝐿 = 5, 𝑎 = 3, 𝐸 = 30 × 106, 𝐼 = 0.0256, 𝑃 = 30
2. 𝑥 = 4.05, 𝐿 = 5, 𝑎 = 3, 𝐸 = 30 × 106, 𝐼 = 0.0256, 𝑃 = 30

CONTENTS

Module 5: CONDITIONAL
STATEMENTS

Lesson 5.3 – Conditional Statements: if-elseif

Learning Objectives

After reading this lesson, you should be able to:

• use the if-elseif statement to address multiple conditional cases,

• identify when to use multiple if-end statements,

• program an if-elseif-else statement,

• identify the differences between elseif and else.

What is the if-elseif statement?

An elseif conditional clause is the third and last type of conditional clause
we cover. An elseif clause does essentially the same thing as an if statement
since it has its own condition: except it will only be evaluated when its parent
(and previous) if statement is false (see Example 1). The elseif clauses can
also have multiple conditional expressions just like we discussed in Lesson 5.2
for if statements.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

Example 1

Given a real number num, write a MATLAB program that displays, “The number
is positive” if the input number is positive, or “The number is negative” if the
input number is negative, or “The number is zero” if the input number is zero.
Run and test your program three times, using the values of num of -4.5, 0, and
6.

Solution

Only one condition (if or elseif) will be true at once. It is also essential to
note that the whole linked conditional statement is terminated by a single end.

Example 2 illustrates another use of the if-elseif statement. Here, we want to
check for a certain string and conditionally run our block of code based on that.
We use a special function strcmp() to avoid a “matrix dimension mismatch”
error from MATLAB when comparing strings.

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/strcmp.html

CONTENTS

Example 2

Provide a greeting based on a username entered by a string. Display the result
to the Command Window.
Solution

Important Note: In an if-elseif-else statement, only the if OR
the elseif OR the else runs.

Independent vs. Dependent Cases

In this context, a conditional case just means that we wish to consider a specific
scenario, which is described by one or more individual conditions. Independent

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

cases can all be true simultaneously (or independently). They do not depend
on each other to be true or false (see Example 3). Independent cases should be
implemented with separate if statements. For example, the width and height
of a beam are independent conditions (neglecting application requirements).

Dependent cases cannot be true simultaneously and should be implemented with
elseif/else clauses (see Example 4). Take Example 1, for instance. These
are dependent cases because only one can be true for a given input. Another
example is checking the value of the cross-sectional area of a beam. The area
cannot be two values at once, so checking whether the area is X or Y should be
implemented as dependent cases.

Example 3

Check whether the two independent variables x and y are within given bounds.
The value of x should be less than 5, and that of y should be greater than 20.
Display the result to the Command Window.

Solution

Combining these if-end statements as an if-elseif statement (if x<5 and elseif
y>20) would only result in the x message displaying (with the current values of
x and y). You should try this for yourself!

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

In Example 4, both conditions (cases) depend on a, so they are dependent. The
variable a cannot be two values simultaneously.

Example 4

Check whether the variable a is less than five or not. Display the result to the
Command Window.

Solution

If you are still unsure about the differences between dependent and independent
conditions, just take a step back when you are programming and think whether

CONTENTS

the two (or more) scenarios you are considering can be true simultaneously in
the “real world”. Can a = 2 AND a = 3? No! You are implementing “real
world” scenarios when you program, so you should first know what is possible
or not in the real world. Then write a program structure that implements it in
your code.

What is the if-elseif-else statement?

We can put everything we have learned together with an if-elseif-else state-
ment. As you can see in Example 5, else must always come last! That is, if
all previous conditions are false, the code block under the else statement will be
executed.

Example 5

Monitor the temperature of an oven. Write a program that determines whether
the oven is still heating up, over the target temperature, or at the target tem-
perature. The two necessary temperature values are given as follows. The last
temperature reading from the temperature sensor of the oven is 400°F. The bake
temperature set by the user is 425°F.

Solution

CONTENTS

Notice these are dependent cases (there is only one temperature value at a
given time), so the cases are implemented with an if-elseif-else statement.
Using an if-elseif-elseif statement would also yield a correctly functioning
program, but it would be slightly less computationally efficient since there would
be an extra condition to check in the second elseif clause.

What is the difference between the else and elseif
conditional clauses?

An elseif has its own condition, whereas else has no condition and will al-
ways run given that all conditional clauses (if or elseif) before it are false.
Therefore, you should only use an else when you want to address all other
possibilities. Use elseif when you want to address specific cases only, and
when you want to address multiple specific cases that are unique (i.e., the cases
cannot be true at the same time: a > 0 and a < 0).

Important Note: else must always come last in a conditional state-
ment.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Example Usage
Conditionally execute
blocks of code in
multiple exclusive areas

elseif if a<5; disp('case 1');
elseif a>8; disp('case2');
end

https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/if.html?searchHighlight=if&s_tid=doc_srchtitle

CONTENTS

Multiple Choice Quiz

(1). Which of the following statements is not true about the elseif clause?

(a) elseif must always be used in conjunction with an if statement.

(b) elseif must have its own condition.

(c) An elseif clause is not always executed.

(d) One may only use up to three elseif clauses in a single if-end statement.

(2). What will the Command Window output of the following program be?

(a) A = 4.1

(b) B = 13

(c) Incorrect use of '=' operator.

(d) A = 3

(3). What is the Command Window output of the following program?

(a) Case A

(b) Case B

(c) Case C

(d) Case D

CONTENTS

(4). What is the Command Window output of the following program?

(a) Option 1

(b) Option 2

(c) None

(d) The program displays nothing in the Command Window.

(5). Fill in the blank with one of the choices to make this code output b = 6.

(a) a==b

(b) a<=b

(c) a~=b

(d) a<b

Problem Set

(1). Given an integer, write a MATLAB code for displaying whether the integer
is a) positive (greater than zero), b) zero, c) or negative (less than zero). In

CONTENTS

Example 1 the solution is given using elseif, but here you are asked to use
three separate if-end statements to complete the solution.

(2). A student’s grade is based on their score in four categories: homework,
projects, tests, and final exam. The weight of each category and the student’s
scores are given in Table A below.

Table A: Student grade information.

Category Weight Example Scores
Homework 10% 88
Projects 12% 95
Tests 48% 76
Final exam 30% 91

The letter grades are given by

• 90 ≤ A ≤ 100,

• 80 ≤ B < 90,

• 70 ≤ C < 80,

• 60 ≤ D < 70, and

• F < 60

Write a program that calculates the overall percentage and letter grade for any
student in the class and displays these in the Command Window. Use the given
example as your test case.

(3). Your friend is having a hard time keeping track of their weekly schedule,
which is as follows:

• Monday – Class at 7:30 AM and work at 5:00 PM

• Tuesday – Class at 2:00 PM and 4:30 PM

• Wednesday – Weekly group progress meeting at 11:30 AM and no class

• Thursday – Same as Tuesday

• Friday – Same as Monday

CONTENTS

Your friend uses MATLAB every day, and therefore you told him you would
write a program to keep track of his daily events. Using your knowledge of
conditional case-structure, write a program where the output is a string of
characters containing the events of a single day (not the entire week of events).
The program input will be an integer which corresponds to a day of the week,
where 1 is for Monday, 2 is for Tuesday, etc.

Provide an error statement if a number other than 1,2,3,4 or 5 is entered. Test
your program using an input of 4 (corresponding to Thursday).

(4). So, you want my phone number and need to know my BMI? How shallow
can you be? In 1998, the federal government introduced the body mass index
(BMI) to determine an ideal weight based on a person’s height. Body mass
index is calculated as 703 times the weight in pounds divided by the square of
the height in inches, the obtained number is then rounded off to the nearest
whole number (Hint: 23.5 will be rounded to 24; 23.1 will be rounded to 23;
23.52 will be rounded to 24). The criterion for the weight category is given as
follows:

• BMI < 19 - Underweight

• 19 ≤ BMI ≤ 25 - Healthy weight

• 25 < BMI ≤ 30 - Overweight

• BMI > 30 - Obese

Develop a MATLAB program that outputs an integer based on the person’s
input weight, w, and height, h. The integer 0, 1, 2, or 3, is the output, depending
on if a person is underweight, healthy weight, overweight, or obese, respectively.

Develop a program where based on a person’s input weight, w, and height,
h, it outputs a description of their health state and a target healthy weight (if
needed). The description to the health state output is, “Underweight”, “Healthy
weight”, “Overweight”, or, “Obese”, and the target weight is to be rounded
to the whole integer. Use the fprintf() function to describe all inputs and
outputs.

(5). United States citizens pay federal income tax, social security tax, and
Medicare tax on their wages.

Federal Income Tax: According to the Internal Revenue Service, a single-status
U.S. citizen will pay 2018 federal income taxes according to the following chart*.

10% on income between $0 and $9,525

12% on the income between $9,526 and $38,700; plus $952.50

CONTENTS

22% on the income between $38,701 and $82,500; plus $4,453.50

24% on the income between $82,501 and $157,500; plus $14,089.50

32% on the income between $157,501 and $200,000; plus $32,089.50

35% on the income between $200,001 and $500,000; plus $45,689.50

37% on the income over $500,001; plus $150,689.50

Social Security tax: In 2018, this is 6.2% on earnings up to $128,400**

Medicare tax: In 2018, this is 1.45% on all earnings.** An additional 0.9%
applies to individuals who earn over $200,000.***

Complete parts (a) and (b):

a. Construct a pseudo code for a MATLAB program to find a person’s total
tax liability based on their income. Assume all income is taxable.

b. Assume all income is taxable and write a program that inputs

1. the person’s income, income,

and then outputs the owed

1. federal tax, fedTax,

2. social security tax, ssTax,

3. medicare tax, medTax.

4. total taxes, totalTax.

Display all of the inputs and outputs by using the fprintf() function, complete
with an explanation in a reasonable format.

Run the program with incomes of $32,000, $85,000 and $269,000.

References:

* Kelly Phillips Erb, “New: IRS Announces 2018 Tax Rates, Standard
Deductions, Exemption Amounts And More”
<https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-
2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133>

**U.S. Government, “Update 2019 – Social Security”
<https://www.ssa.gov/pubs/EN-05-10003.pdf>

https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133
https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133
https://www.ssa.gov/pubs/EN-05-10003.pdf

CONTENTS

*** U.S. Government, “Questions and Answers for the Additional Medicare
Tax”
<https://www.irs.gov/businesses/small-businesses-self-employed/questions-
and-answers-for-the-additional-medicare-tax>

https://www.irs.gov/businesses/small-businesses-self-employed/questions-and-answers-for-the-additional-medicare-tax
https://www.irs.gov/businesses/small-businesses-self-employed/questions-and-answers-for-the-additional-medicare-tax

CONTENTS

Module 6: PROGRAM
DESIGN AND
COMMUNICATION

Lesson 6.1 – Flowcharts

Learning Objectives

After reading this lesson, you should be able to:

• identify flowchart symbols,

• construct a flowchart for a program,

• read a flowchart.

What is a flowchart?

A flowchart is the combination of geometric symbols connected with arrows
(called flowlines) that represent steps in a process. Each geometric symbol has
a meaning (for example, a rectangle represents a process), and is filled with
necessary information (for instance, a formula in a process). Flowcharts are
commonly used as a tool to help layout and plan large-scale processes and
programs. It is also very common to find flowcharts as part of engineering plans
and corporate meetings. Table 1 shows commonly used flowchart symbols with
their meaning.

Table 1: Common flowchart symbols and meanings.

CONTENTS

Symbol Title Meaning

Flowline connect symbols
and indicate the
flow of logic.

Terminal To represent the
beginning or end of
a task.

Input/OutputFor input and
output operations.

Processing For arithmetic and
data manipulation
operations.

Decision For the logic of
comparison
operations.

Connector Used to join
different flowlines.

Predefined
Process

To represent a
group of statements
that performs one
processing task.

Annotation To provide
additional
information about
another flowchart
symbol.

Loop Used for
loops/repetition

Offpage
Connector

To indicate that the
flowchart continues
to a second page.

CONTENTS

Example 1

Hero’s formula for calculating the area of a triangle with the length of the three
sides as a, b, c is given by,

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐),

where

s is the semi-perimeter of the triangle, that is,

𝑠 = 𝑎+𝑏+𝑐
2 .

The perimeter of the triangle is given by

𝑃 = 𝑎 + 𝑏 + 𝑐

Construct a flow chart for calculating the perimeter and area of a triangle.

Solution

(Flowchart is shown on the next page.)

CONTENTS

Figure 1: Flow chart for calculating the area and perimeter for a triangle.

Example 2

So, you want my phone number and need to know my BMI? How shallow can
you be? In 1998, the federal government introduced the body mass index (BMI)
to determine healthy weights.

Body mass index is calculated as 703 times the weight in pounds divided by the
square of the height in inches. The obtained number is then rounded off to the
nearest whole number (Hint: 23.5 will be rounded to 24; 23.1 will be rounded
to 23; 23.52 will be rounded to 24). The criteria for a healthy weight are given
as follows.

Table 2: Range of BMI values.

CONTENTS

Range of BMI Meaning of Range
𝐵𝑀𝐼 < 19 Unhealthy weight
19 ≤ 𝐵𝑀𝐼 ≤ 25 Healthy weight
𝐵𝑀𝐼 > 25 Unhealthy weight

Construct a flow chart for the above example that will determine whether a
person has a healthy or unhealthy weight, based on a person’s weight and height.

Solution

A person’s BMI is calculated by the formula

𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑙𝑏𝑠)
[ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑛)]2 × 703.

The steps in the algorithm are:

1. Enter the person’s weight in lbs and height in inches.

2. Calculate BMI using, 𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑙𝑏𝑠)
[ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑛)]2 × 703.

3. If BMI is not in the range of 19 and 25, then the person has an unhealthy
weight, else the weight is healthy.

The flowchart for this problem is shown in Figure 2.

(Flowchart is shown on next page)

CONTENTS

Figure 2: Flow chart for calculating a person’s BMI.

Example 3

The function 𝑒𝑥 can be calculated by using the following infinite Maclaurin
series:

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + ⋯

CONTENTS

Make a flowchart for finding 𝑒𝑥 using the first n terms of the Maclaurin series.

Solution

This solution uses loops to develop the flowchart. Although loops have not been
covered in this book yet (Module 8), loops are simply a repetitive task, starting
and ending at some value. An example of using a loop is a summation series.

Figure 3: Flowchart for calculating 𝑒𝑥 using the Maclaurin Series.

Multiple Choice Quiz

(1). The flowchart symbol for a process is

(a)

(b)

CONTENTS

(c)

(d)

(2). The symbol in a flowchart represents

(a) the direction that information travels in a process.

(b) the direction of least resistance in a process.

(c) the reverse direction of data flow.

(d) a visual distraction.

(3). The flowchart symbol for a decision is

(a)

(b)

(c)

(d)

(4). The flowchart symbol, , is used to

(a) specify a process.

(b) start or end a flowchart.

(c) link two or more flowlines.

(d) add a new input or output.

(5). Given the following flowchart, what would be the output

(a) a = 4, c = 5

(b) b = 56, c = 5

(c) b = 5, c = 20

(d) b = 20, c = 5

CONTENTS

Problem Set

(1). Construct a flowchart for the process of finding the area of a trapezoid,
given the length of the two parallel sides and the perpendicular distance between
the parallel sides.

(2). Construct a flowchart for determining if an object will fit in a three-
dimensional box. To do this, compare the dimensions of the object to the

CONTENTS

dimensions of the box. Both sets of dimensions should be inputs to the pro-
gram.

(3). Construct a flowchart for determining if a given number is positive, zero,
or negative.

(4). Construct a flowchart for the process of finding the depth to which a
spherical metal ball is submerged under water, given the density of the metal,
the outer radius, and the wall-thickness of the ball. Assume the density of water
is 1000 kg/m3.

Figure A – Metal ball floating in water.

Hint: Apply Archimedes principle. The volume of the ball under water for a
given depth, H is

𝑉 = 𝜋𝐻2 (3𝑟out − 𝐻)
3

(5). Convert the following flowchart into a MATLAB program.

CONTENTS

CONTENTS

Module 6: PROGRAM
DESIGN AND
COMMUNICATION

Lesson 6.2 – Pseudocode

Learning Objectives

After reading this lesson, you should be able to:

• write your own pseudocode,

• write a MATLAB program based on reading a pseudocode.

What is a pseudocode?

A pseudocode is an informal outline of a program or computer process that is
written using a mixture of computer language syntax and English conventions.
When a programmer writes a pseudocode, it is intended for the use of other
programmers or users, and not for a computer to read or process. Similarly,
pseudocodes are used in the realm of numerical methods to communicate ideas,
without having to write out long numerical equations. There are no rules for
what you can or cannot state in a pseudocode, but the code needs to be easily
readable, therefore subroutines and formal variable names are often omitted.

To keep the pseudocode organized, a commonly accessible word processor should
be used. This makes editing, opening, and sending the pseudocode easy. Re-
member, the pseudocode should be easy to read and user-friendly.

CONTENTS

When planning out code, you can also write some quick and less formal pseu-
docode. In this case, handwritten pseudocode is perfectly fine. As you become
a more experienced programmer, these tools will become more useful and intu-
itive.

How are pseudocodes used?

A good pseudocode is used to outline a specific order of events to solve a problem,
and hence, bridging the gap between the problem and the solution. To solve
any problem, one must first clearly identify the problem, next determine the
methods to solve the problem, and finally, solve the problem. Code can gener-
ally be written faster and communicated better with the use of pseudocode(s) to
design the structure of the program and outline the operations to be conducted.
A pseudocode should usually be written without bias to any programming lan-
guage. Keep in mind that programming languages do not always share the same
syntax for the same task. For this reason, when developing a pseudocode, try
to state the process desired and not the syntax needed to complete the process.
Leave it to the reader to decide what syntax to use to complete the process.
Example 1 shows how a pseudocode is developed.

Example 1

Your boss has given you the MATLAB program shown in Figure 1. He tells you
that the program will be converted to Python by another worker, and needs
you to develop a pseudocode for the Python worker to follow. Be sure to avoid
using MATLAB specific syntax in the pseudocode, as MATLAB and Python
have different syntax.

CONTENTS

Solution

The pseudocode:

Find the value of the derivative of a function at a point.

1. Clear all windows and workspace variables.

2. Display the purpose of the program.

3. Define x as a symbolic variable.

4. Prompt user to enter the desired function.

Enter as a function of x.

5. Take the first derivative of input function with respect to x.

6. Prompt user to enter the point where the derivative needs to be evaluated.

7. Substitute/replace x with the number.

Substitute the value for x where derivative needs to be found.

8. Display value of the derivative of the function at a given value of x.

9. End program.

CONTENTS

Note that the pseudocode is an informal outline containing a mixture of English
and programming syntax. This makes the process easier for any reader to follow
and to interpret. Even if the reader does not understand MATLAB, they should
still be able to understand the process of the program. The pseudocode in
Example 1 is fairly detailed and could be made more compact. However, be
aware, that a fine line separates an over-detailed pseudocode from an under-
detailed one, and that it is the responsibility of the writer to provide enough
details to outline the process clearly.

How can I convert a pseudocode for a problem
into a program?

If you are given a problem, you can write a pseudocode by following the logic of
how the problem would be solved. The pseudocode is now a roadmap to writing
the MATLAB program. Fully read the pseudocode to understand the objective
of the program. Once you have read the pseudocode, re-read it, this time mark-
ing the inputs and corresponding outputs. Also, you should be taking a mental
(or written) inventory of the commands and functions needed to accomplish the
objective. Look at Example 2 to see how a pseudocode is written for a simple
problem and then turned into a program.

Example 2

You are given the task of writing a MATLAB program for finding the value of
the definite integral based on a customer’s specifications.

∫
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥

The specifications state that the user is to be prompted to enter all program
inputs (they are not interested in seeing the m-file) and that only the value of
the integral should be displayed.

a. Write a pseudocode that outlines the problem.

b. Solve the problem using MATLAB.

Solution

a. The pseudocode reads:

CONTENTS

Find the area under a curve.

• Clear all windows and workspace variables

• Display the purpose of the program

• Input (as prompted)

– Function, f (x)

– The lower limit of integration, a

– The upper limit of integration, b

• Integrate (f (x), x, a, b)

• Output

– The area under a curve

b. With the pseudocode provided in part (a), the following m-file has been
developed. Note the order and process of the program, and compare the
m-file to the pseudocode.

CONTENTS

Multiple Choice Quiz

(1). A pseudocode is

(a) a mixture of computer language and English.

(b) computer language in an outline form.

(c) English that is translated to a computer language

(d) a waste of time.

(2). Pseudocodes are written by

(a) humans for computers to read

(b) humans for humans to read.

(c) computers for computers to read.

(d) computers for humans to read.

(3). The format for a typical pseudocode is

(a) paragraph form.

(b) MATLAB comment form.

(c) a collection of abbreviations.

(d) outline form.

(4). Computer-language specific names should be

(a) used as little as possible in a pseudocode.

(b) okay to use in a pseudocode.

(c) entirely avoided in a pseudocode.

CONTENTS

(d) included as much as possible in a pseudocode.

(5). When writing pseudocode, the format can include _____ comments per
line.
(a) one
(b) two
(c) three
(d) as many as you want

Problem Set

(1). Write a pseudocode for a program that outputs the surface area and volume
of a sphere where the input is the radius of the sphere.

(2). Write a pseudocode for a program that outputs a person’s BMI where the
inputs are the person’s weight in lbs and height in inches. The BMI formula is,

BMI = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙𝑏𝑠)
[ℎ𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛)]2 × 703

(3). Convert the MATLAB program shown below into a pseudocode.

CONTENTS

Module 6: PROGRAM
DESIGN AND
COMMUNICATION

Lesson 6.3 – Writing Better Code

Learning Objectives

After reading this lesson, you should be able to:

• use techniques for evaluating and decreasing computational time,

• provide useful information in comments to other programmers,

• organize your code using proper indenting,

• choose inputs and outputs wisely,

• create your own error and warning messages to users.

This lesson is about how to write code that is efficient in the computational
power it demands, the time it takes you to write (and especially edit it), and
the time it takes for someone else to understand/edit your code.

Just like traditional writing where we use punctuation, paragraphs, lists, fonts,
etc. to improve the “visual performance” of our work, the same necessity applies
to code. Syntax is the punctuation and grammar. Using appropriate spacing
and comments helps the reader categorize and fully understand the code. In
MATLAB, using sections helps someone navigate and debug the code.

CONTENTS

How can I improve my code for computational
efficiency?

Use more efficient functions - Not all functions are created equal. Remember,
they are algorithms that perform some function: some set of steps. In some
cases, changing the function (algorithm) you use in your code will significantly
affect the time it takes to run your program. For example, line() is generally
computationally less demanding than plot(). Why not always use the more
efficient function?

Write more efficient code - One example of making your code more efficient is
to try to reduce the number of loop iterations in it (if applicable). For instance,
you might change the structure of your code to get rid of a nested loop or
use a binary search. We will not cover this in-depth here, but know that it is
important in contexts where computational efficiency is crucial. The salience
of computational efficiency is relative, which means you might have a “big”
program/large dataset or a “small” computer.

MATLAB Profiler Tool - To help identify specific areas for scrutiny in your
program, you can use the MATLAB Profiler tool (see more on their Profile to
Improve Performance page). This tool can be run by clicking the “Run and
Time” button in the Editor tab next to “Run” (see Figure 1).

Figure 1: The Editor tab highlighting the “Run and Time” button for the
MATLAB Profiler.

https://www.mathworks.com/help/matlab/ref/line.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/plot.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html

CONTENTS

Figure 2: Output window of the MATLAB Profiler run on Example 2 from
Lesson 4.8.

In Figure 2, we see an example output of the MATLAB Profiler. The time to
run the whole m-file is given on the first line: 0.344 seconds in this case. We can
recognize some of the entries like title(), legend(), close, and polyfit(),

CONTENTS

while others are not familiar. The unfamiliar lines are functions/commands that
execute as a direct result of the code we wrote in our m-file.

Looking at the second line of the Profiler output, we see that the legend()
is taking the longest to complete in this program (although still very short).
Clicking on the function name in the Profiler will open the Profile Detail Report
window (see Figure 3). This will give specific details (down to the line of code)
on run time for that function.

You can see in Figure 3 that a summary of the lines that took the longest to
run is given as well as the sub-functions or “child” functions. We will end our
discussion of the MATLAB Profiler and computational efficiency for now as
more programming knowledge and experience are needed to dig deeper into the
topic. The principal thing to remember is that there are easy-to-use tools in
MATLAB that can help you make your code run faster.

CONTENTS

Figure 3: The Profile Detail Report for the legend() function, which was
called in an example program.

How does hardcoding impact a program?

If you are new to programming, you have probably never heard of “hardcoding”.
It occurs when unnecessary changes inside the body of the code are necessary
when the inputs of the program are changed. If a code is written well, only the
inputs need to be changed for the program to still be valid (whether that relates

CONTENTS

to math, syntax, or something else). It is especially problematic if someone else
is trying to use your code, but does not know that it only works correctly for
specific inputs. For example, you have inputs for the dimensions of a beam but
not for the material properties of the beam like Young’s modulus, which you
hardcoded later in the program.

What are some tips for good comments and spac-
ing?

It is always important to make proper use of comments in your programs. A
few reasons to use good comments are that they:

• help you understand and write better code,

• help you debug the code as you are writing the program,

– Track issues in the code. It can help to use a unique, searchable
keyword like “FIX”.

– Remember why you did “X” a week ago.

– Provides organization, so you can more easily isolate problems.

• document the code for future reference (for yourself and others).

Now, a few ways to write good comments are:

• Organize your code with “stand-out” headings (for longer pieces of code
~100+ lines),

– Do not overuse these headings as that would defeat the purpose,

– Put a short, simple description,

• Leave detailed notes on things that are especially complicated,

• Leave a comment explaining the purpose of each variable when you define
it for the first time.

CONTENTS

Why does proper code indenting matter?

You may have noticed that certain blocks of code are indented. There are a
number of different cases where this is standard practice, but the two most
common are for conditional statements, which you have seen in Module 5, and
for loops, which you will see in Module 8. Although MATLAB does not re-
quire indenting, some programming languages (like Python) do require proper
indenting. In any case, using proper indenting is standard practice in MATLAB
because it makes your program more readable and clearer.
Fortunately, MATLAB makes indenting easy with “smart indenting” tools. Just
highlight the portion of code you want it to fix and click the appropriate button
in the toolbar (see Figure 1).

What are some tips for choosing inputs and out-
puts?

Choosing appropriate inputs and outputs to your program (and, later in the
course, your functions) is a balance between giving the user enough control to
make the program useful, but not so many as to overwhelm them. For example,
if you are writing a program to calculate the weight of an object (w = mg),
obviously weight would be your output. You would want to set the mass of the
object as an input but probably not the acceleration due to gravity. However, if
you worked at NASA, both the mass and the acceleration due to gravity would
be good inputs.
On the other side of things, you do not want to output too much information.
For instance, you should avoid outputting too many intermediate steps of the

CONTENTS

program (as a finished product). If you are writing a program that checks to
see whether your item will fit in a certain shipping box, you do not need to
report the checks for each of the three dimensions. Just report “fits” or “item
too large”.

The key to making good choices is to think about the uses for your code and
the audience (users). There are no general rules other than this on making a
decision on what you will require from and report to the user.

What are some tips for thinking ahead in when
designing my program?

So far in this lesson, we have talked about thinking ahead when writing code
in several contexts such as writing informative comments and choosing the ap-
propriate inputs and outputs. However, this is not the extent of planning that
should go into your code. As you mature as a programmer, you will start to
pick up more things that you will consider as you write a new program. Some
common examples of this have to do with numbering conventions. The “Y2K”
crisis was caused because no one implemented a simple and “obvious” case for
a change in millennia. The problem arose from only a year with its last two
digits (e.g., 97, 98, 99, 00).

Not only should we try to anticipate a user’s needs, but we should write pro-
grams as robustly as possible whenever possible. That means expecting the
unexpected. For example, use the else conditional clause with care as “else”
encompasses a lot of things (i.e., everything else). Check user inputs for validity
(correct data type, numeric range/sign, etc.).

Multiple Choice Quiz

The content of this page is intentionally blank

Problem Set

The content of this page is intentionally blank

https://en.wikipedia.org/wiki/Year_2000_problem
https://en.wikipedia.org/wiki/Year_2000_problem
https://www.mathworks.com/help/matlab/ref/if.html

CONTENTS

Module 7: FUNCTIONS

Lesson 7.1 – User-Defined Functions

Learning Objectives

After reading this lesson, you should be able to:

• write your own functions in MATLAB,

• use the rules for creating and naming functions,

• write functions in a program m-file in MATLAB,

• write multiple functions in one function m-file.

What is a function?

You already know what a function is because we have been using MATLAB
built-in functions through this whole book! Simply put, a function is a piece of
code with explicit input and output variables. A function performs a task for
you. For example, the function sin() takes a number in radians as its input
and returns the sine of the input. It is executed whenever/wherever it is called
in an m-file. Of course, the sine of a number is not magically found: there is
some code behind the scenes. In this module, we will show you how to create
and use your own custom functions.

The functions you make are called “user-defined” functions. These are no dif-
ferent conceptually than the “built-in” MATLAB functions you have been using
so far in the course. We use “user-defined functions” as a shorthand to indicate
it is a custom function that we write ourselves.

CONTENTS

The lines of code that are below the function statement (see Example 1b) are
called the body of the function, and contain standard MATLAB code. This is
where all processes, operations, or logic tests are placed in the function.

What are the naming rules for functions in MAT-
LAB?

Similar to naming m-files and variables, there are rules for what you can name
functions. In fact, they are the same rules as those for m-files and variables,
which you can review in Lesson 2.1. In addition to those rules, the name of the
function must be the same when it is defined and when it is called. For example,
if you defined a function and name it myFunc(), then you must use the same
name when you call it (myFunc()).

How can I create functions in MATLAB?

User-defined functions exist in many popular programming languages. MAT-
LAB functions, just like in other languages, have input and output variables,
which need to be defined both when the function is created and when it is called.

Some general steps to follow when you are creating functions in MATLAB are
given here. These steps apply to functions that are saved in a separate m-file
as in Examples 1, 2, and 4.

1. Choose input and output variables for your function. Think about how
your function will be used.

2. Save the function in the same folder as your main m-file.

3. Write your code in the function.

4. Make sure all changes in your function m-file are saved so they will be
reflected when you call the function.

5. Define the input and output variables in your main m-file.

6. Call the function in the main m-file, and test run the main m-file.

When beginning to write a function, one may not know exactly how many
outputs or inputs the function will have. To help determine this, it is a good

https://www.mathworks.com/help/matlab/ref/function.html

CONTENTS

idea to develop a flowchart (Lesson 6.1) or pseudocode (Lesson 6.2) of the process
before making the function.

The first method that we cover for creating a MATLAB function is to make two
separate m-files: one for defining the function (Example 1b) and one for calling
it (Example 1a). We need the m-file given in Example 1a because a function
must be called in order to run (execute its code). You cannot run the function
file simply by pressing “Run” from inside the function m-file like we have been
doing for other m-files.

In this method, the function m-file must have the same name as the func-
tion. For example, the code in Example 1b must be saved in an m-file named
myTriangle.m. Failing to follow this rule will return an error.

We present the m-file where the function is called (e.g., Example 1a) first because
this is the way we are used to interacting with functions thus far. Next, the
function definition m-file is shown (e.g., Example 1b).

Example 1a

Write and test a MATLAB function called myTriangle(). Given the length
of the three sides of the triangle, it should find the area and perimeter of a
triangle. If a, b, and c are the lengths of the three sides of the triangle, then
the perimeter of the triangle is

𝑃 = 𝑎 + 𝑏 + 𝑐

and the area of the triangle is

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

where s is the semi-perimeter of the triangle, and

𝑠 = 𝑃
2 .

Test the program using inputs of a = 3, b = 4, c = 5.

CONTENTS

Example 1b

This function is called in the program written in Example 1a. The problem
statement is given there.

To write the function, let us first define the desired input and output variables.

Input variables:

• a = length a of triangle

• b = length b of triangle

• c = length c of triangle

Output variables:

• area = area of triangle

• perimeter = perimeter of triangle

The function, mytriangle(), will hence be defined,

• function [area,perimeter] = myTriangle(a,b,c)

CONTENTS

Note that all the statements have been suppressed from showing in the Com-
mand Window in the function myTriangle() (see Example 1b). Unsuppressed
statements can confuse the user of a function, who may be using it transparently
just as one uses the MATLAB functions such as cos(), int(), etc.

The result from the function myTriangle() is returned to the m-file where
the function is called (see Example 1a), which can then be displayed to the
Command Window if the user chooses to.

To avoid confusion, follow these five rules for developing a function:

1. always save your function m-file as the function name,

2. do not assign inputs in the function m-file,

3. never use clc, clear, or close commands in the function,

4. suppress all statements by placing the ; at the end of each statement,

5. avoid displaying information (using the disp() or fprintf()) inside the
function m-file.

Although the variables within the function file must be consistent, they do not
have to be the same when you call the function. Think about any MATLAB
function you have called: sin(), for example. You have no idea what the
variables names are inside the predefined function sin(), and you could use
any input or output variable names when you called the function. That is, both
output1 = sin(input1) or sinVec = sin(vec) or any other combination of
valid variable names will work. However, input and output variable names must
be consistent throughout the function m-file where it is defined (see Example
2b et al.).

https://www.mathworks.com/help/matlab/ref/sum.html
https://www.mathworks.com/help/matlab/ref/sum.html

CONTENTS

MATLAB also needs to know where to find the function m-file when you call
it. The easiest way to achieve this is to put both m-files in the same folder,
and this is typically what you should do. If you need to access the function file
often in different programs, look at the documentation for adding the function
directory (folder) to a MATLAB path. This means the m-files will not have to
be in the same folder, and MATLAB will automatically “find” them.

Important Note: Function m-file must be in the same location as the
main m-file, or it must be added to a MATLAB path.

Example 2a

Write a program that calls a function, which determines the sign of a number
(positive, negative, or zero).

Test the program using an input of num = 3.

Example 2b

This function is called in the program written in Example 2a. The problem
statement is given there.

CONTENTS

Can I define functions in the program m-file?

For the MATLAB version R2016b and later, MATLAB allows us to define
functions in the same m-file as the program we call them in. That is, we can
define and call a function in the same m-file as seen in Example 3 (we do not
have to create a separate file). This is the second method for defining MATLAB
functions that we will cover in this lesson. An end is required for functions that
are defined in a program m-file (see Example 3). It can also be required in other
cases (see Example 4b). To be safe, you can default to always putting an end
to terminate your functions.

Important Note: Function definitions must be at the end of the m-file
for functions defined in a program file (functions defined and called in the same
m-file).

Example 3

In 1998, the federal government developed the body mass index (BMI) to de-
termine healthy weights. Body mass index is calculated as 703 times the weight
in pounds divided by the square of the height in inches. The obtained number

CONTENTS

is then rounded off to the nearest whole number (Hint: 23.5 will be rounded
to 24; 23.1 will be rounded to 23; 23.52 will be rounded to 24). The criterion
for the weight category is simplified for the example as is given below.

𝐵𝑀𝐼 < 19 – Underweight

19 ≤ 𝐵𝑀𝐼 ≤ 25 – Healthy Weight

𝐵𝑀𝐼 > 25 – Overweight

Write a function that accepts weight (lbs) and height (in) as input variables, and
outputs the BMI as an integer, weight category as a string (underweight, healthy
weight or overweight), and the target weight (lbs) as an integer. The target
weight of an underweight person would correspond to a BMI of 19, and that
of an overweight person to a BMI of 25. No fprintf() or disp() statements
should be in the function.

function [BMI,category,target_weight] = myBMI(w,h)

Test the program for an individual who weighs 185 lbs and is 75 inches tall.

CONTENTS

The choice of whether to put the function in a program m-file (define and call in
the same m-file) or define the function in its own separate m-file is completely
up to you (provided your version of MATLAB supports it). One of the reasons
you might choose to define the function in a separate m-file is if your program
is already long and/or the function will be used by other programs.

Another function organization option is given in Example 4b where we define
multiple functions in one function m-file: again, only for convenience. Note
that these functions, such as triangleArea(), are called within the function
areaFunction() in the same m-file. Therefore, calling areaFunction() will
call the appropriate area calculation function, such as triangleArea(), and
execute its code.

Example 4a

Write a program that calls a function, which finds the area of a given shape.
The program should work for three different shapes: triangle, square, and circle.
Inputs to the program and the function are a string containing the name of the
shape and its dimensions.

CONTENTS

Test the program for a triangle with sides of lengths 3, 4, and 5.

Example 4b

This function is called in the program written in Example 4a. The prob-
lem statement is given there. This m-file is still saved in the usual way as
areaFunction.m.

Note that all the functions shown below are in the same m-file. They are split
here only for formatting.

CONTENTS

Lesson Summary of New Syntax and Program-
ming Tools

CONTENTS

Task Syntax Example Usage
Create a MATLAB
function

function function out = name(in);\
out = 4*in; end

Multiple Choice Quiz

(1). To write a function named myOwnSin(), the function m-file should be
named as

(a) anything I want

(b) myOwnSin.m

(c) myOwnSinfunction.m

(d) sin.m

(2). The following function is written and saved as an m-file called multmine.m

The function is then called in a separate m-file as follows

The Command Window output is

(a) Undefined function or variable.

(b) 3

(c) 7

(d) 21

(3). What is the cause of the error that is returned when the following MATLAB
code is run? The m-file is saved as example.m.

CONTENTS

(a) The required end is not at the end of the inline function perimeterSq().

(b) The function is not called correctly.

(c) All of the inputs are not defined when the function is called.

(d) All of the above

(4). The following function is written and saved as an m-file called multmine.m

The function is then called as follows

multmine(3,7)

The Command Window output is

(a) Undefined function or variable.

(b) 3

(c) 7

(d) 21

(5). The following function is written and saved as an m-file called myCheck.m

The function is then called in a separate m-file as follows

CONTENTS

The Command Window output is

(a) Undefined function or variable.

(b) 1

(c) 2

(d) 6

Problem Set

(1). Write a MATLAB function that finds the area of a trapezoid given the
length of the parallel sides and the perpendicular distance between the par-
allel sides. Name your function, myTrap(), where the function has three in-
puts, side1, side2, and height, and the output is area. Be sure not to use
fprintf() or disp() inside the function m-file, and suppress all statements
within the function. Test your function with at least two different sets of input
values.

(2). A simply supported beam is loaded as shown in Figure A. Under the applied
load, the beam will deflect vertically. This vertical deflection of the beam, V,
will vary along the length of the beam from x = 0 to L, and is given by

𝑉 =
⎧{
⎨{⎩

𝑃𝑏
6𝐸𝐼𝐿 [(−𝐿2 + 𝑏2)𝑥 + 𝑥3] , 0 < 𝑥 < 𝑎

𝑃𝑏
6𝐸𝐼𝐿 [(−𝐿2 + 𝑏2)𝑥 + 𝑥3 − 𝐿

𝑏 (𝑥 − 𝑎)3] , 𝑎 < 𝑥 < 𝐿

where,
x is the distance from the left end,
P is the load,
L is the length of the beam,
a is the location where the load P is applied,
E is the Young’s modulus of the beam material, and
I is the second moment of area.

CONTENTS

Figure A: Simply supported beam shown with applied load, P.

Complete parts (a) and (b).

a. Make a flowchart for the problem.

b. Write a MATLAB function that outputs the vertical deflection of the beam
at a point of interest.

The function inputs are

1. distance from the left end to the point of interest, x,

2. length of the beam, L,

3. load, P,

4. location where the load P is applied, a,

5. Young’s modulus of the beam material, E, and

6. second moment of area, I,

and output is,

1. the calculated deflection, V.

In your test m-file, display all of the inputs and outputs by using fprintf(),
complete with explanation and reasonable format.

Run your test m-file for the following two input sets.

1. 𝑥 = 2.5, 𝐿 = 5, 𝑎 = 3, 𝐸 = 30𝐸6, 𝐼 = 0.0256, 𝑃 = 30

CONTENTS

2. 𝑥 = 4.05, 𝐿 = 5, 𝑎 = 3, 𝐸 = 30𝐸6, 𝐼 = 0.0256, 𝑃 = 30

(3). The monthly payment on a car loan is given by the formula

𝑃𝑀𝑇 = 𝐿𝐴 ∗ 𝐼𝑃𝑀
1 − (1 + 𝐼𝑃𝑀)−𝑁𝑀

where,
PMT = monthly payment in dollars,
LA = loan amount in dollars,
IPM = interest rate in fraction per month (Note the units),
NM = number of monthly payments (Note the units).

Write a MATLAB function myCar() that outputs the monthly payment for
buying a car based on the loan amount (dollars), length of loan (years) and
interest rate (annual percentage rate). The three inputs to the function are

1. loan amount entered in dollars, LA,

2. length of loan entered in integer years, NY, and

3. interest rate entered in annual percentage rate (APR), APR.

The output is,

1. the monthly payment on the car.

Test your function at least three times for three different sets of inputs. Your
test m-file should show the following in the Command Window.

• Loan amount in dollars,

• Length of loan in integer years,

• The interest rate in annual percentage rate,

• Monthly payment in dollars.

(4). The three principal stresses 𝜎1, 𝜎2, 𝜎3for the stress state

[𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑧𝑥]

at a point are given by the solution of the nonlinear equation

CONTENTS

𝜎3 − 𝐽3𝜎2 − 𝐽2𝜎 − 𝐽1 = 0

where,
𝐽1 = 𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜎𝑥𝜏2

𝑦𝑧 − 𝜎𝑦𝜏2
𝑧𝑥 − 𝜎𝑧𝜏2

𝑥𝑦
𝐽2 = 𝜏2

𝑥𝑦 + 𝜏2
𝑦𝑧 + 𝜏2

𝑧𝑥 − 𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑧 − 𝜎𝑧𝜎𝑥
𝐽3 = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

Write a MATLAB function to find the principal stresses, if the stress state is
given as a vector of elements. The output principal stresses should be a vector
of [𝜎1, 𝜎2, 𝜎3].

(5). Using your knowledge of conditional statements, write a MATLAB function
that evaluates the “hotness” level of water leaving a faucet. Prior to exiting
the faucet, cold and hot water are mixed together to adjust the output water
temperature, where the hot water level may be adjusted from 0 to 100%. The
outlet temperature (𝑇𝑜(𝑜𝐹)) is rounded to the nearest whole number and may
be found by

𝑇𝑜 = (𝐻𝑤) 165 + (1 − 𝐻𝑤) 62

where 𝐻𝑤 is the percentage of hot water used and is entered as a decimal (i.e.,
95% is entered as 0.95). There are four “hotness” levels, which are:
- extremely hot water, 𝑇𝑜 ≥ 142𝑜𝐹
- hot water, 110 ≤ 𝑇𝑜 < 142𝑜𝐹
- warm water, 85 ≤ 𝑇𝑜 < 110𝑜𝐹\ - room temperature water, 𝑇𝑜 < 85𝑜𝐹
Save your function m-file as outletWater.m.

Your function has one input, which is

1. the percentage of hot water used (entered as a decimal),

and will have two outputs, which are

1. a string of characters describing the current water condition, and

2. the temperature of the water.

Test your function using a hot water input of 84% (entered as 0.84).

(6). United States citizens pay federal income tax, social security tax, and
Medicare tax on their wages.

CONTENTS

Federal Income Tax: According to the Internal Revenue Service, a single-status
U.S. citizen will pay 2018 federal income taxes according to the following chart*.

10% on income between $0 and $9,525
12% on the income between $9,526 and $38,700; plus $952.50
22% on the income between $38,701 and $82,500; plus $4,453.50
24% on the income between $82,501 and $157,500; plus $14,089.50
32% on the income between $157,501 and $200,000; plus $32,089.50
35% on the income between $200,001 and $500,000; plus $45,689.50
37% on the income over $500,001; plus $150,689.50

Social Security tax: In 2018, this is 6.2% on earnings up to $128,400**
Medicare tax: In 2018, this is 1.45% on all earnings.** An additional 0.9%
applies to individuals who earn over $200,000.***

Complete the following:

(a). Construct a pseudo code for a MATLAB function to find a person’s total
tax dollars owed based on their income. Assume all income is taxable.

(b). Assume all income is taxable and write a function myTaxes() has an input
of the person’s income, income, and then outputs the

1. federal tax, fedTax,

2. social security tax, ssTax,

3. medicare tax, medTax, and

4. total taxes owed, totalTax.

In your test m-file, display all the inputs and outputs by using fprintf(),
complete with explanation and reasonable format.

Test your function for the following incomes: $32,000, $85,000 and $269,000.

(7). Using your knowledge of conditional statements, write a MATLAB function
that determines the letter grade and overall percentage score for a student. The
function must use the score breakdown as follows:

Table A: Student grade information.

Category Weight Example Scores
Homework 10% 88
Projects 12% 95
Tests 48% 76
Final exam 30% 91

CONTENTS

The total score is rounded to the nearest whole number to calculate the letter
grade as follows:

• 90 ≤ 𝐴 ≤ 100,
• 80 ≤ 𝐵 ≤ 89,
• 70 ≤ 𝐶 ≤ 79,
• 𝐹 ≤ 69

Save your function m-file as letterGrade.m.

There are three function inputs, which are the

1. homework score out of 800

2. test score out of 300

3. quiz score out of 80

There are two outputs which are

1. a string containing the student’s letter grade, and

2. the overall percentage score.

Test your function with the following set of inputs:

Homework score of 620

Test score of 260

Quiz score of 62

References:

* Kelly Phillips Erb, “New: IRS Announces 2018 Tax Rates, Standard
Deductions, Exemption Amounts And More”
<https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-
2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133>

**U.S. Government, “Update 2019 – Social Security”
<https://www.ssa.gov/pubs/EN-05-10003.pdf>

*** U.S. Government, “Questions and Answers for the Additional Medicare
Tax”
<https://www.irs.gov/businesses/small-businesses-self-employed/questions-
and-answers-for-the-additional-medicare-tax>

https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133
https://www.forbes.com/sites/kellyphillipserb/2018/03/07/new-irs-announces-2018-tax-rates-standard-deductions-exemption-amounts-and-more/#28e98d0d3133
https://www.ssa.gov/pubs/EN-05-10003.pdf
https://www.irs.gov/businesses/small-businesses-self-employed/questions-and-answers-for-the-additional-medicare-tax
https://www.irs.gov/businesses/small-businesses-self-employed/questions-and-answers-for-the-additional-medicare-tax

Module 7: FUNCTIONS

Lesson 7.2 – Function Design and Communication

Learning Objectives

After reading this lesson, you should be able to:

• add descriptions of your function for the help command,

• define your own custom errors and warnings in a function.

How can I add a description for my function?

Remember the help command we learned about at the beginning of this course?
This utility function also allows us to get a summary of information about any
of our custom functions. MATLAB allows us to provide helper descriptions in
the functions that we write so that we can reference back to them through the
Command Window if needed. These function descriptions come in handy when
trying to quickly remember what a function does and how to use it. The spacing
and formatting of the description seen in Example 1 is optional but suggested for
clarity. You can also include a brief function usage example within the function
description!

The help text must come immediately after the function definition line. This
is the only rule. However, it is standard to make the first word in the help
description as the function name in all capital letters. This will make any other
mentions of the function name bolded in the help text (see Command Window
output for Example 1). In Example 1, the function is myTriangle(), so the
first word of the second line is "MYTRIANGLE".

https://www.mathworks.com/help/matlab/ref/help.html
https://www.mathworks.com/help/matlab/matlab_prog/add-help-for-your-program.html

CONTENTS

Example 1

Add a description for the help command to myTriangle(). See Example 1 from
Lesson 7.1 for the original problem statement and full solution.

How can I define errors and warnings inside my
function?

We first learned about defining custom warning and error messages in Lesson 6.3:
Writing Better Code (as well as many other helpful tips). Now, we will apply
the error() and warning() functions inside a custom function that we write.
The main difference for error handling in our custom functions is that you will
need to foresee possible mistakes or misunderstandings that users might have.
This can include mistakes a user might make regarding general information like
mathematics or domain/problem-specific knowledge. For example, if you know
that it is not possible to have a negative measure of length, you may want
to check that the length input to your function is not a negative number and
display a warning message if the length given is less than zero. As a side note,
error() and warning() functions are not exclusive to our custom functions but
can be implemented anywhere in your MATLAB code.

As seen in Example 2, if the user triggers a warning(), a custom message will
be displayed, and the running program will continue to execute. However, if the
user triggers an error(), the program will halt, and the error message will be
displayed.

https://www.mathworks.com/help/matlab/ref/error.html?searchHighlight=error&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/warning.html
https://www.mathworks.com/help/matlab/ref/error.html?searchHighlight=error&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/ref/warning.html
https://www.mathworks.com/help/matlab/ref/warning.html
https://www.mathworks.com/help/matlab/ref/error.html?searchHighlight=error&s_tid=doc_srchtitle

CONTENTS

Example 2

Write a function that calculates the area of a square. Inside the function, check
that the given dimension of the square is valid and return a warning if it is
negative. Also check to see if the input shape is supported and return an error
if it is not. In this case, only squares are supported.

Solution

CONTENTS

In the following two CommandWindow outputs, you can see two lines referenced
in each Command Window output. One line is referencing where the problem
(warning/error) occurred in the function (actual cause of the problem), and the
other one is the line where the function is called. The information given next
to the line reference (e.g., "L_7_02_Ex2") will help you identify the location of
the warning/error more precisely.

The following Command Window shows the output for the function call
areaSq('circle', 6).

The following Command Window shows the output for the function call
areaSq('square', -6).

Lesson Summary of New Syntax and Programming Tools

CONTENTS

Task Syntax Example Usage
Execute a MATLAB
warning

warning() warning('Message to user')

Execute a MATLAB
error

error() error('Message to user')

Multiple Choice Quiz

(1). For the help command to work for a function, a comment has to be placed

(a) immediately after the function definition line

(b) on the next line after the function definition line

(c) on the last line in the function

(d) anywhere in the function

(2). You are asked to write a function that finds the area of a triangle by using
Hero’s formula 𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) where 𝑠 = (𝑎 + 𝑏 + 𝑐)/2 and a,
b, and c are the lengths of the sides. When writing an error message in the
function, a good case to address would be

(a) a, b, and c are positive

(b) 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) is positive

(c) 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) is negative

(d) s is not an integer

(3). The warning() function accepts inputs of only

(a) static text

(b) text with one variable input

(c) variable inputs

(d) text and/or one or more variable inputs

(4). When an error() statement is enumerated and executed in a function, it
displays

(a) program name

(b) function name

CONTENTS

(c) line number

(d) all of the above

(5). When a warning() is triggered,

(a) a custom message is displayed

(b) the program halts

(c) the program pauses until the user continues execution

(d) the program does not show the line number where the warning occurred

Problem Set

(1). Add a description to the function you wrote for Exercise 2 in Lesson 7.1.
Give a description of the purpose of the function and a definition of each input
and output variable along with what type of data it should contain (e.g., number,
string, etc.) and their units when applicable.

(2). Add a description to the function you wrote for Exercise 3 in Lesson 7.1.
Give a description of the purpose of the function and a definition of each input
and output variable along with what type of data it should contain (e.g., number,
string, etc.) and their units when applicable. Add an error message if the user
inputs a negative annual percentage rate (APR).

(3). Add a description to the function you wrote for Exercise 6 in Lesson 7.1.
Give a description of the purpose of the function and a definition of each input
and output variable along with what type of data it should contain (e.g., number,
string, etc.) and their units when applicable. Add a warning message if the user
inputs a negative income.

(4). Add a description to the function you wrote for Exercise 7 in Lesson 7.1.
Give a description of the purpose of the function and a definition of each input
and output variable along with what type of data it should contain (e.g., number,
string, etc.) and their units when applicable.

Write a MATLAB function that finds the depth to which a metal spherical
hollow ball is submerged underwater (see Figure A on the next page), when the
density of the metal, the outer radius of the ball, and the thickness of the ball
are given. Assume the density of water is 1000 kg/m3. Test your function three
times for three different physically acceptable input choices.

CONTENTS

Add a description to the function you write. Give a description of the purpose
of the function and a definition of each input and output variable along with
what type of data it should contain (e.g., number, string, etc.) and their units
when applicable.

Hint: Apply the Archimedes’ principle. The volume of the ball underwater for
a given depth H is

𝑉 = 𝜋𝐻2 (3𝑟out − 𝐻)
3

Figure A: Metal ball at equilibrium floating in water.

Module 8: Loops

Lesson 8.1 – while Loops

Learning Objectives

After reading this lesson, you should be able to:

• differentiate between a definite and an indefinite loop,

• write programs using while (indefinite) loops with one condition,

• write programs using while loops with multiple conditions.

In all the previous lessons, we have considered two basic control structures: se-
quence and conditional. In this lesson, we introduce you to the control structure
of repetition (or “loops”).

What is a loop?

In programming, a loop is a syntax used to describe the action of repeating a
block of code (task) more than once. This block of code (task) is commonly
referred to as the body of the loop. In Figure 1, we can see two equivalent
representations of code. On the left side, the same block of code is repeated
multiple times explicitly, while a loop is used on the right side.

CONTENTS

Figure 1: The fundamental structure of loops is to run the same block of code
many times.

There are two types of loops: the for loop and the while loop. The for loop
will conduct a task a definite number of times because its repetition is controlled
by a counter, whereas the while loop will perform a process an indefinite (not to
be confused with an infinite) number of times because its repetition is controlled
by a logical expression. We will cover while loops in this lesson and for loops
in Lesson 8.2.

What is a while loop?

The while loop conducts an indefinite number of repetitions (loops), where the
number of repetitions is controlled by a conditional expression. The while loop
will continue to conduct repetitions until the conditional expression becomes
false. Once the conditional expression is false, MATLAB exits the while loop
and continues to execute the m-file from the lines below the loop end statement.
The four main components of a while loop are

1. the statement (while),

2. conditional expression,

3. the body of the loop,

4. end statement.

CONTENTS

The conditional expression(s) used in the while loop are the same type of com-
parisons (for example, >, <=, ~=) and logical operators (for example, ||, &&)
used in if statements.

When programming with while loops, one must be careful to avoid an infinite
loop. Remember, the loop will continue to run until the conditional expres-
sion is false. If you find yourself in an infinite loop (where the conditional
expression never becomes false) in MATLAB, simply click inside the Command
Window and hit Ctrl+c to end the execution of the program. However, if you
have pressed “run” multiple times, you will need to repeat the stop command
(Ctrl+c) multiple times.

Important Note: Be careful of infinite loops! An infinite loop is
when you write a condition that is always true and never becomes false. For
example, while 1 \> 0.

Example 1

Output the square of all the integers from 3 to 7 in the Command Window. If
one wants to write out the square of the integers from 3 to 7, one can write a
MATLAB code for it as follows:

i = 3;

fprintf(\'Square of %g is %g\', i, i\^2)

i = 4;

fprintf(\'Square of %g is %g\', i, i\^2)

i = 5;

fprintf(\'Square of %g is %g\', i, i\^2)

i = 6;

fprintf(\'Square of %g is %g\', i, i\^2)

i = 7;

fprintf(\'Square of %g is %g\', i, i\^2)

As one can see in the above code, the only thing changing in each line is the
value of i (also compare with Figure 1). Now take the case where one has to

CONTENTS

find the squares of numbers from 3 to 100, you will have a lot of code to write.
This is a good example of showing the need for a loop.

Solution

Now, we will solve the problem using a while loop. Notice that a pseudocode is
first made to help identify what variables are changing and what expressions to
display. When programming with loops, you may be tempted to jump in with
both feet, but you need to clearly identify which variable(s) are changing, and
which segments of program are repetitive.

Pseudocode for Example 1:

1. Start program, clear window/variables.

2. Set up a loop to find the square of numbers

Starting number = 3

Final number = 7

Increment by 1

Square each number.

3. Display output

4. End loop when final number is reached

5. End program

Remember, all loops must be terminated with an end statement.

In Example 1, the value of i is changing. The while loop starts with the
value of i being 3, and then increments the value of i by 1 until the loop
completes with the value of i being 7. There are multiple correct solutions for
the while-end loop in Example 1 – one could change the condition of the while
statement and the placement of the incrementing line (i = i + increment).
For example, another correct solution could include the while loop condition
as i \< endNum. Consider what else would need to be changed to get the same
output as shown in the Command Window Output. Doing exercises like this
will be helpful when solving more complex problems with loops because it will
deepen your understanding of the fundamentals.

Example 2

Using a while loop, write a program that counts to four. The counting should
be displayed in the Command Window.

CONTENTS

Solution

The iterator, i, is what counts for us in the solution. We can name the iterator
any valid variable name (other examples for this case are num or count).

It is essential to understand that the condition for the while loop can be anything
that fits your problem and does not make the while loop infinite. Although the
examples we have seen so far have while loops that solely rely on a counter vari-
able for their conditions, there are other common examples that have distinctly
different conditions. Some informal examples of this are:

1. Let us say you have a case where an engineer wants to gather sensor data.
We might want to write a program using a while loop that stops based on
user input.

stop = false;

while stop == false

%Code to get sensor reading

end

2. In Example 3, we want to calculate values of a function over a specific
range: so we use a counter (the independent variable, 𝑥) in the condition.
However, we might, instead, want to stop the loop when 𝑦(𝑥) becomes
negative or reaches a specific value. In these instances, we would write our
condition with those in mind rather than the counter (iterated variable).

Example 3

Given 𝑦(𝑥) = 𝑥2 − 49, display the value of 𝑦 only when 𝑦 is positive for 𝑥 =
−10, −9, ... 9, 10.
Solution

Pseudocode for this example:

1. Clear Command Window and all workspace variables.

2. Initialize the starting value of x

starting point is -10

3. Conduct loop repetitions while true.

number, x less than or equal to 10

CONTENTS

4. Loop body:

Conduct, 𝑦 = 𝑥2 − 49
Place logic test: is y > 0?

If true, display y

Increase count by one

5. End loop

The Command Window for Example 3 shows that although the while loop is
continuing to run for all integer values of 𝑥 from -10 to 10 as we required; a
conditional statement inside of the loop ensures that only positive values of 𝑦
are displayed in the Command Window.

Example 4

Write a while loop to find the value of 𝑥 which is updated recursively by

1
2 (𝑥 + 9

𝑥)

Use a starting value of 𝑥 = 64 and do the recursion 10 times. Display the last
updated value of 𝑥 as the only output.

Solution

Pseudocode for this example:

1. Clear Command Window and all workspace variables.

2. Initialize loop count, starting at 1.

3. Continue loop while true:

While count is less than or equal to 10

4. Body of loop:

𝑥 = (1/2) ∗ (𝑥 + (9/𝑥))

5. Display last updated value of x

6. End loop

CONTENTS

The program increases the loop counter, i, by one for each repetition. Once the
loop counter, i, is greater than 10, the while loop conditional expression is false
and the loop terminates. Observing precisely how loops work from one iteration
to the next is essential to being successful in this module.

To give you a background of the above example from a practical point of view,
the recursive formula is a way to find the square root of 9. In fact, you can find
the square root of any positive real number R by using the recursive formula

𝑥𝑖+1 = 1
2 (𝑥𝑖 + 𝑅

𝑥𝑖
)

What comparisons can I use with a while loop?

The comparisons used with the while loop are the same as those used for con-
ditional statements (if statements). These are shown in Table 1. Just like in
conditional statements, you may make more than one comparison in the while
loop. You can join each comparison by using the && (AND) and || (OR) oper-
ators.

Table 1: Operators to be used for while loop comparison.

Meaning Code
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=
Equal to ==
Not equal to ~=
Boolean Operators
AND &&
OR ||

The while loop is an indefinite loop, and hence we need to be careful as to not
let it become an infinite loop! For instance, in Example 5, if the series does not
converge, you will have yourself an infinite loop. To prevent this from happening,
we add a condition to the while loop that limits the maximum number of terms
added to the series, maxTerms. As soon as the number of terms used, term,
becomes greater than the maximum number of terms allowed, maxTerms, the
loop condition will not be met, and thus the loop will end.

The value of the exponential function, 𝑒𝑥, can be found by the following series

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2! + 𝑥3

3! + ... + 𝑥𝑛

𝑛!

CONTENTS

Write a program that uses a while loop to find the value of 𝑒𝑥. Define value
of 𝑥 and stop the loop once the absolute relative approximate error is less than
0.1%. The definition of the absolute relative approximate error is

Absolute Relative Approximate Error = |Previous Approximation − Present Approximation|
|Present Approximation| ×100 %

Example 5

Test your program for 𝑥 = 0.75. Display the final approximation for 𝑒𝑥, the
number of terms used, and the last absolute relative approximate error calcu-
lated.

Solution

First, one must establish what the inputs are:

1. the number to be evaluated, x,

2. the desired absolute relative error (also called pre-specified tolerance),
tolerance.

Now, we define the outputs as:

1. value of 𝑒𝑥, exp1, and,

2. absolute relative approximate error, ARAE,

3. number of terms used, term.

The series expression for 𝑒𝑥 can be rewritten as

𝑒𝑥 = 𝑥0

0! + 𝑥1

1! + 𝑥2

2! + 𝑥3

3! + ... + 𝑥𝑛

𝑛! + ...

and hence in the compact mathematical form as

𝑒𝑥 =
∞

∑
𝑖=0

𝑥𝑖

𝑖!

Example 5 shows how a while loop can be implemented to find the value of a
series within a pre-specified tolerance. Because we need to keep adding terms
until the pre-specified tolerance is met, the number of terms to be used is not
pre-determined, which is why we use an indefinite loop. It should be noted that

CONTENTS

as one decreases the pre-specified tolerance, more terms may need to be added to
achieve the same level of accuracy. Note that we initialize the absolute relative
approximate error, ARAE, as a number bigger than the pre-specified tolerance,
tolerance, by adding 1 to it. This is done to get the while loop to start the
first time around.

Lesson Summary

Task Syntax Example Usage
Iterate over a block of code
indefinitely

while a=0; while a<5; a=a+1;
disp(a); end

Multiple Choice Quiz

Problem Set

(1). Write a program using while loop that adds the number 7 to each value
of j, as j takes on integer values of 1,2,…,11,12. Output all 12 values to the
Command Window.

(2). Write a program using while loop that adds the number 7 to each value
of j, as j takes on integer values of 12,11,…,2,1. Output all 12 values to the
Command Window.

(3). Using a while loop, write a program that adds together all integers from
–20 to 20.

(4). Using a while loop, write a program that outputs cos(x) values until cos(x)
changes to a negative number. Take values of x from 0 to 2𝜋 in increments of
0.1.

(5).Using a while loop, write a program that adds together the elements of any
sized vector. Test and run your program using the vector vec =

258 − 470 − 9

.

(6). Write a MATLAB program that conducts the following summation

sum1 = 2 + 3 + 4 + ... + (𝑛 + 1)

where,

CONTENTS

n is the number of terms used.

Use the while loop to perform the summation of the first 16 terms.

(7). Using your knowledge of the while loop and conditional statements, write
a MATLAB program that determines the value of the following infinite series

𝑓 (𝑥) = 1
2𝑥 + 1

4𝑥2 + 1
2𝑥3 + 1

4𝑥4....

There are two program inputs, which are,

1. the value of x, and

2. the number of terms to use.

There is one program output, which is

1. the numeric value of the series.

Your program must work for any set of inputs. You may assume that the value
for the number of terms to use will always be entered as a positive whole number.

Test your program for the following set of inputs:

number of terms = 32

value of x = 0.46

(8).The function, cos(x) can be calculated by using the following infinite Maclau-
rin series

cos(𝑥) = 1 − 𝑥2

2! + 𝑥4

4! − 𝑥6

6! +

The absolute percentage relative approximate error, |𝜀𝑎| is defined as

|𝜀𝑎| = ∣ Present Approximation−Previous Approximation
Present Approximation ∣ × 100.0.

Complete the following.

a. Write the pseudocode for a function that finds the approximate value of
cos(x). The function inputs are the argument, x, a pre-specified error
tolerance, tol, and a maximum number of terms to use nmax. There
are two ways that the loop could end: either it meets the pre-specified
tolerance or it uses the maximum number of terms allowed.

b. Write a MATLAB function, myCos, using while loops for calculating
cos(x). The stopping criterion is if a pre-specified tolerance is met or
if a specified number of terms are used.

CONTENTS

The function inputs are

1. the value at which cos(x) needs to be calculated, x,

2. pre-specified tolerance, tol,

3. the maximum number of terms allowed, nmax.

The function outputs are

1. the value of cos(x) when either the maximum number of terms are used
or the pre-specified tolerance is met, cosVal,

2. last absolute relative approximate error calculated, absApproxError,

3. the number of terms used, terms, and

4. how the function terminated, howEnded. Assign the integer 1 to
howEnded if the pre-specified tolerance is met, and 2 if the maximum
number of terms are used.

c. Test your function in part (b) with four different, well-thought-out input
variable sets. All four tests are to be made in the same test m-file.

(9). Provided with the following geometric series:

𝑆 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ... + 𝑎𝑟𝑛

write a MATLAB program using the while loop to determine the value of S
given the inputs a, r, and n.

The program inputs are:

1. the constant, a. (a≠ 0)
2. the value, r (r ≥ 0), and
3. term constant, n as n+1 is the number of terms, n ≥ 1.

The program output is:

1. The numeric value of S.

Test and run your program for the following combination of a = 3, r = 2.1, and
n = 8.

CONTENTS

Module 8: Loops

Lesson 8.2 – for Loops

Learning Objectives

After reading this lesson, you should be able to:

• write programs using for (definite) loops,

• use a for loop to plot multiple functions,

• decide when to use a for loop vs a while loop.

What is a for loop?

In this lesson, the discussion is limited to the counter-controlled repetition: that
is, the for loop. A for loop has the same basic purpose as a while loop: to loop,
or iterate, over a block of code called the body; that is, to execute the same
lines of code over and over until stopped. The for loops are defined by defining
a loop counter variable, or “iterator”. The loop counter variable, or “iterator”,
keeps track of which repetition the loop is on.

1. The loop counter variable takes the initial value of startingValue,

2. The loop counter is checked if it is less than or equal to the endValue
(the check is greater than or equal to the endValue if the increment is a
negative number).

3. If so, the loop executes the body of the loop, and the loop counter variable
is incremented by the value of increment. Step 2 is repeated, and if the
check turns out to be false, the loop is terminated.

https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html
https://www.mathworks.com/help/matlab/ref/for.html

CONTENTS

As we learned in Lesson 8.1 about while loops, this is a variable that changes
the value after running each loop iteration. The iterator must have definite
bounds (a starting and ending value), and the for loop will stop once it reaches
the end of this specified bound. In general, this means the for loop will execute
the same number of times regardless of all other conditions.

For example, in the loop definition for i = 3:2:9, the loop counter variable is
named i. It will take the initial value of 3 and end at 9 in increments of 2 (four
repetitions will be made with values of i = 3,5,7,9).

If required, the startingValue, increment, and/or endValue can be negative.

For example, in the loop definition for i = 11:-3:2, the loop counter variable
is named i. It will take the initial value of 11 and end at 2 in increments of -3
(four repetitions will be made with values of i = 11,8,5,2).

Example 1

Output the square of all the integers from 3 to 7 in the Command Window.

Solution

If one wants to write out the square of the integers from 3 to 7, one can write
a MATLAB code for it as follows:

i = 3;

fprintf('Square of %g is %g',i,i^2)

i = 4;

fprintf('Square of %g is %g',i,i^2)

i = 5;

fprintf('Square of %g is %g',i,i^2)

i = 6;

fprintf('Square of %g is %g',i,i^2)

i = 7;

fprintf('Square of %g is %g',i,i^2)

Recall from Lesson 8.1, that this is precisely the type of problem that loops are
meant for. In this lesson, we will solve the problem using a for loop. Notice
that a pseudocode is first made to help identify what variables are changing and
what expressions to display.

Pseudocode for Example 1:

1. Start program, clear window/variables.

https://www.mathworks.com/help/matlab/ref/while.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html

CONTENTS

2. Set up a loop to find the square of numbers [Note this can be a for or
while loop. Compare with Example 1 of Lesson 8.1.]

Starting number = 3

Final number = 7

Increment by 1

Square each number.

3. Display output

4. End loop

5. End program

Remember, all loops must be terminated with an end statement.

CONTENTS

In Example 1, the value of i is changing. The for loop starts with the value
of i being 3, and then increments the value of i by 1 until the loop completes
with the value of i being 7. It is important to understand that the value of the
variable i changes and is checked with each loop repetition.

Take a look at some other examples of how the for loop works.

for i = 3:1:7

fprintf('Square of %g is %g',i,i^2)

end

The above for loop would print values of the square of 3, 4, 5, 6, 7 as the loop
starts with the value of 3, increments by 1 and stops at 7.

for i = 3:2:7

fprintf('Square of %g is %g',i,i^2)

end

The above for loop would print values of the square of 3, 5, 7 as the loop starts
with the value of 3, increments by 2 and stops at 7.

for i = 3:2:10

fprintf('Square of %g is %g',i,i^2)

end

The above for loop would print values of the square of 3, 5, 7, 9 as the loop
starts with the value of 3, increments by 2 and stops at 9. Although the end
limit is 10, it does not get to that value as the next variable value after 9 would
be 11, which is outside the range.

for i = 10:-2:4

CONTENTS

fprintf('Square of %g is %g',i,i^2)

end

The above for loop would print values of the square of 10, 8, 6, 4. The ex-
pression used here contains a negative increment, hence the order of the outputs.
Example 2 {-} Output in the Command Window the square of every other
integer from 1 to 8.

Solution

CONTENTS

In Example 2, the range of values of the loop counter variable i starts at 1
and ends at 8. Why does this for loop stop at i = 7? The answer lies in the
increment of the loop counter. This program specifies that the increment is 2,
thus MATLAB starts with i = 1, followed by i = 3, 5, and finally 7. The
next value that i would take on would be 9, but this is greater than the end
value of 8. Hence, 7 is the final value of the loop counter variable.

How can I reference vectors inside of a loop?

With loops, the possibilities are endless! Any task that needs to be conducted
more than once is an ideal job for a loop. In engineering, mathematics, and
science, loops are often used to manipulate arrays, find the value of a series or
generate a term of a sequence, solve differential equations numerically, find an
integral numerically, and many more tasks.

Example 3 shows how loops are used to conduct a mathematical operation: sum-
ming a vector of numbers. To do this, we will combine two important concepts
we have learned. We have referenced specific elements of a vector before (e.g.,
vec(1)), but to find the sum of a vector of any size, we need to use a loop to “loop
through” all the elements in the vector. Therefore, vec(1)+vec(2)+vec(3)+…
becomes vecSum = vecSum + vec(i).

Example 3

Given the following vector data =

2, 7, 4.5, 2.3, 6, 5

, find the sum of all the elements by using a for loop.

CONTENTS

Output the value of the summation by using fprintf(). Be sure to develop a loop
that will work for any size vector.

Solution

Pseudocode for Example 3:

1. Clear Command Window and all variables.

2. Prompt user to input data set, as a vector.

3. Use length() to find the number of elements.

4. Initialize the loop counter variable used for the summation.

5. Start loop.

6. Index from 1 to final element number.

7. Add each element together in the body of the loop.

8. End loop.

9. Display results.

CONTENTS

In the m-file, note that the variable named dataSum is equal to zero before start-
ing the loop. Why does the m-file require that dataSum be equal to zero before
even starting the loop? Well, think back to the fundamentals of programming.
When MATLAB sees a variable name, it asks what its value is. Therefore, when

CONTENTS

MATLAB evaluates the line dataSum = dataSum + 1 for the first time (i=1),
the dataSum on the right side would be undefined (if we had not initialized
it). This, of course, will give an error. That is why we initialize dataSum = 0
before the loop starts: so MATLAB will know the value of dataSum on the first
iteration of the loop. Once the loop finishes the first repetition, a new value of
dataSum overwrites the previous value stored in dataSum, and this continues
till the loop has run its course.

Example 4

Background: A legend says that King Shriham of India wanted to reward his
grand minister, Ben, for inventing the game of chess. There are 64 squares on a
chessboard. When asked what reward he wanted, Ben asked for one grain of rice
on the first square of the board, two on the second square of the board, four on
the third square of the board, eight on the fourth square of the board, and so
on until all squares are covered. That is, he was doubling the number of grains
on each successive square of the board. Although Ben’s request looks less than
modest, King Shriham quickly found that the amount of rice would be many
times more than his country could ever produce. Can you find out how much
rice Ben was asking for?

Specifications: Write a program that uses a loop to calculate the total amount
of rice on the first n squares of a chessboard given the above scenario. Hint:
if four squares on the board are used, then you have eight grains on the last
square, and the total grains of rice is 1 + 2 + 4 + 8 = 15.

The program input is the number, n (n ≤ 64), of squares used.

The outputs are,

1. the number of grains on the last square used that reads: The total
number of grains on square ??? is ???“.

2. the number of grains of rice on the board that reads: The total
number of the grains is ????.

CONTENTS

The grains on the current square is assigned to the variable currentGrains. The
variable currentGrains is added to the totalGrains to keep track of the grains

CONTENTS

on the board.

Do I have to use the loop counter variable in the
body of the loop?

No, you do not have to use the loop counter variable in a for loop. The purpose
of the loop counter variable and its assignment in the for loop is to control the
number of times the loop will repeat itself.

One can see that in the solution in Example 5, the loop counter variable j is
not used in the body of the for loop. In this case, the loop counter variable is
solely used as a counter, to keep track of how many repetitions that this loop
has made.

Example 5

You can find the square-root, 𝑥, of any positive real number, 𝑅, by using the
recursive formula given as

𝑥𝑖+1 = 1
2 (𝑥𝑖 + 𝑅

𝑥𝑖
)

Write a for loop to find the value of 𝑥 for 𝑅 = 9, which is updated recursively
by 1

2 (𝑥 + 9
𝑥). Use a starting value of x = 64 and do the recursion 10 times.

CONTENTS

To review, all for loops require a loop counter variable assigned to a vector of
startingValue:increment:endValue, a body of code, and an end statement.
The loop counter variable does not need to be used inside the loop (recall Ex-
ample 5) because it is just a counter to keep track of repetitions.

CONTENTS

When do I use a for loop vs. a while loop?

There are no absolute rules for when to use a for loop over a while loop or
vice versa. In almost every case, you can accomplish the task with either a for
or a while loop (this is because you can use conditions to change the behavior
of a for loop into a while-like loop). The difference is the efficiency or elegance
of your solution. There is generally no right answer, so you should focus on
learning how each one works rather than when to use each one.

Examples 6 and 7 are given purely to demonstrate the similarities between using
a for and while loop to solve the same simple problem. As mentioned above
and in later lessons, there are cases where one is easier and more appropriate to
implement than the other.

Example 6

Write a program that sums all the numbers between 1 and n using a for loop.
Display the final sum in the Command Window. Use n = 10 as a test case for
the program.

https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html

CONTENTS

CONTENTS

Remember, it would be wrong to name “sumOfNumber” as “sum” since “sum”
is a predefined MATLAB function. If it was named “sum”, the actual func-
tion “sum()” would be redefined, and would not work in the final fprintf()
function.

Now, we can solve the same problem using a while loop. We achieve the same
answer in both Examples 6 and 7.

Example 7

Write a program that sums all the numbers between 1 and n using a while loop.
Display the final sum in the Command Window. Use n = 10 as a test case for
the program.

https://www.mathworks.com/help/matlab/ref/while.html

CONTENTS

CONTENTS

Lesson Summary

Task Syntax Example Usage
Iterate over a block of code definitely for for a = 1:5; disp(a);

end

CONTENTS

Multiple Choice Quiz

Problem Set

(1). Write a program using a for loop that adds the number 7 to each value
of j, as j takes on integer values of 1,2,…,11,12. Output all 12 values to the
Command Window.

(2). Write a program using a for loop that adds the number 7 to each value
of j, as j takes on integer values of 12,11,…,2,1. Output all 12 values to the
Command Window.

(3). Using loops, write a program that adds the number 7 to each value of j,
as j takes on integer values of 1, 3, …,9, 11. Output all values to the Command
Window.

(4). A function 𝑓(𝑥) is calculated by using the following infinite series,

𝑓(𝑥) = 1
3 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + ...

Complete the following: (a) Use the syms command with x as the symbolic
character to show the series in the Command Window. The only program input
is the number of terms to use, n.

(b) Calculate the value of 𝑓(𝑥) using an 𝑥 value of 1.24 and the first 30 terms
of the infinite series.

(5). The function, 𝑐𝑜𝑠(𝑥) can be calculated by using the following infinite
Maclaurin series

cos(𝑥) = 1 − 𝑥2

2! + 𝑥4

4! − 𝑥6

6! +

The absolute percentage relative approximate error |𝜀𝑎| is defined as

|𝜖a| = ∣Present Approximation − Previous Approximation
Present Approximation ∣ × 100.0

(a) Find 𝑐𝑜𝑠(0.5) using five terms of the series.

CONTENTS

(b) Find 𝑐𝑜𝑠(0.5) using six terms of the series. Find the absolute percentage
relative approximate error at the end of using the six terms.

(6).Find the average and standard deviation of a given vector of numbers. The
average of numbers (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛) is given by

𝑥 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛

and the standard deviation of the numbers is given as

𝜎 = √ ∑𝑛
𝑖=1(𝑥𝑖−𝑥)2

𝑛−1 .

Write a program using for loops to find the average and the standard deviation
of given numbers in a vector.

(7).The function 𝑓(𝑥) is calculated by using the following infinite series,

𝑓(𝑥) = 𝑥2

17 + 𝑥3

3 + 𝑥4

3 + 𝑥5

3 + ...

Complete the following:

(a) Write a pseudo code for a MATLAB function that finds the value of 𝑓(𝑥),
given the number of terms to use, 𝑛 and the value, 𝑥.
(b) Write a MATLAB function my_fun using for loops for calculating 𝑓(𝑥).
Use 𝑛 terms to calculate 𝑓(𝑥) at a given value of 𝑥.

function fn=my_fun(x,n)

(c) Test the function in a separate m-file for four different cases of input vari-
ables:

i) 𝑥 = 0.25, 𝑛 = 4
ii) 𝑥 = 0.25, 𝑛 = 61
iii) 𝑥 = 3.00, 𝑛 = 1
iv) 𝑥 = 3.00, 𝑛 = 2.

(8). Using your knowledge of for loops and/or conditional statements, write
a MATLAB program that outputs the factorial of any positive input integer N.
Recall that the factorial of a number is found as 𝑛! = 𝑛 × (𝑛 − 1) × ... × 2 × 1.

CONTENTS

For example,

5! = 5 × 4 × 3 × 2 × 1
= 120

Also, recall that 0! is explicitly defined as equal to 1. Provide an error message
in the Command Window if the input number is negative or not an integer. You
should not use the factorial() or similar function to complete this problem.

Test run your program with two sets of inputs. First, test run your program
with the following input,

n = 8

where the output would be

8! is 40320

Then, test run your program with the following input,

n = -12

where the output would be

Error -- The input is negative

Lastly, test run your program with the following input

N = 12.3

where the output would be

Error -- The input is not an integer

(9).A prime number is a positive whole number which has exactly two distinct
number divisors. In other words, a prime number is only divisible by itself and
1. For example, 2, 3, 5, 7, 11, 13 are prime numbers. Note that the number
1 is not a prime number. Use your knowledge of for loops and/or conditional
statements to write a MATLAB program that determines if an input positive
whole number is a prime number. The program input is any positive whole
number, n (𝑛 ≥ 1), and the program output is whether or not the inputted
whole number is a prime number.

Test your program for the number 97, which is a prime number.

Module 8: Loops

Lesson 8.3 – break and continue Commands

After reading this lesson, you should be able to:

• use the continue command in loops,

• use the break command in loops,

• decide between the use of the continue and break commands.

What are the break and continue commands?

The break and continue commands are a way to manipulate both while and
for loops, while they are running. Given this, both of these commands should
always be placed inside conditional statements. This fact will become clear after
reviewing the examples in this lesson.

Neither command, once it has been called, allows the current loop iteration to
complete (i.e., the rest of the loop body is not going to be executed for that
iteration). The commands run exactly where they are placed in the code: not
at the end of the loop iteration.

How does the break command work in MATLAB?

The break command in MATLAB is used to break out of a for or while loop;
that is, it terminates the execution of the loop.

https://www.mathworks.com/help/matlab/ref/break.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/continue.html

CONTENTS

Figure 1: Shows the path of execution when the break command executes.

The break command should always be used in conjunction with a conditional
statement. Once the condition is true, the break command is active and the
loop breaks. After the break command has terminated the loop, the segments
of body code below the break command will not run. The m-file will con-
tinue to run as normal below the loop end statement. This process is visually
summarized in Figure 1.

Example 1

Write a program that calculates the values of 𝑘2 −50 for all integers in [−10, 10]
domain, but only until 𝑘2 − 50 becomes negative. Do not continue calculating
values after a negative result has been found.

Solution

CONTENTS

Figure 2 shows the program flow when/if the break command is executed (line
21). Note the current iteration of the loop does not finish (the message on line
23 is not displayed), and the loop exits immediately. MATLAB then continues
to execute the code after line 24 normally.

CONTENTS

Figure 2: Programming flow once the break command executes.

How does the continue command work in MAT-
LAB?

The continue command in MATLAB is used to conditionally pass control to the
next repetition in loops (both for and while loops). Like the break command,
the continue command should be used with a conditional statement. When the
conditional statement is true, the continue command initiates the next loop
cycle, regardless of the code in the body of the loop. The lines of code below
the continue command are not run until the continue command is inactive.

Figure 3: Shows the path of execution when the continue command executes.

Example 2

You are asked to calculate and print the values of 𝑘2 − 50 for all integers in
[−10, 10] domain, but only if 𝑘2 − 50 is positive.

CONTENTS

Solution

Whenever the continue command becomes active, the execution jumps to the
for statement of the for loop, where 𝑘 gets incremented.

Figure 4: Program flow when continue command executes.

CONTENTS

In Figure 4, we can see that each time the continue command executes (line 21),
the program immediately (without executing the rest of the loop body) continues
to the next iteration of the loop. This means that the message we display with
fprintf() (line 23) will only display (execute) for positive calculated numbers.

Lesson Summary

Task Syntax
Example
Usage

Exit a loop before it finishes. break break
Continue to the next iteration of a loop before the
current iteration finishes.

continue continue

Multiple Choice Quiz

Problem Set

(1).Use for loop(s) to write a MATLAB program that displays the value of 𝑟
and 𝑤, where

𝑤 = −7𝑟2 + 3𝑟 + 25

for 𝑟 in the domain [0,40] in steps of 2 units until 𝑤 turns negative.

(2). Use for loop(s) to write a MATLAB program that outputs all the negative
values of 7 sin(𝑥) in the 𝑥 domain of [0, 3𝜋]. Use an interval of 𝜋

10 .

(3). Repeat Exercise 2 with a while loop.

(4). Using a for loop, write a MATLAB function that finds the voltage (𝑉)
measured across a resistor of resistance (𝑅) when a variable current (𝑖) is applied
to the resistor. The current is a function of time and is given by

𝑖(𝑡) = 2𝑡2 − 3𝑡

where i is measured in amperes and t in seconds. The voltage across the resistor
is given by

CONTENTS

𝑉 = 𝑖𝑅.

The resistor (𝑅) has a constant value of 120 Ω. Find the value of the voltage in
the 𝑡 domain of [0, 20] in increments of 0.1. End finding the voltage when the
voltage reaches 4V or more. Output the final value of the voltage and the time
this value is reached.

(5). Write a MATLAB program that prompts the user to enter a vector of
their choosing and storing the vector as, userVec. Via a for loop, the vector
is entered one element at a time by the user through an input() prompt until
the user enters over to denote the end of the vector. The program should stop
prompting and display the entire vector in the Command Window.

Hint: You will have to use the vector element notation to complete this problem.

(6). Repeat Exercise 5 using the while loop.

Module 8: Loops

Lesson 8.4 – Nested Loops

Lesson Objectives

After reading this lesson, you should be able to:

• apply knowledge of loop fundamentals to create nested loops,

• write programs using nested loops,

• use programming flags in loops.

What is a nested loop?

Nested loops are just what they sound like: a loop within a loop. There are
no programming limitations on how many nested loops you can create. By
definition, you need a minimum of two loops to have nested loops: one parent
and one nested loop. For example, a for loop nested inside another for loop
as seen in Figure 1.

https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html

CONTENTS

Figure 1: Depicts nested loops where one nested (or inner) loop is contained
inside the body of the parent (or outer) loop.

How do nested loops work?

We will go into more examples of nested loop applications in the following
lessons. For now, imagine you want to display each element of a vector individ-
ually. You will need one for loop to “look” through all of those elements. Now,
suppose you want to display all the elements of a matrix. Remember, you can
think of a matrix as a collection of vectors. You will need to run a for loop for
each vector contained in the matrix! That is, you will need one for loop for
each column of the matrix and one for loop for each row of the matrix. So, the
block of code you want to repeat contains a loop.

Example 1

Show each element of any given matrix one element at a time in the Command
Window. Test the program with the matrix 𝐴.

𝐴 = ⎡⎢
⎣

7 11
13 19
23 31

⎤⎥
⎦

https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html

CONTENTS

Solution

CONTENTS

How do loop mechanics apply to nested loops?

Loop mechanics refers to how loops function fundamentally. For example, how
a loop runs a block of code multiple times or how variables are referenced from
the previous iteration values. The code will run the entire nested loop before
going to the next iteration of the parent loop. You can see this general property
of loops exhibited in Example 2. Notice the outer loop only iterates after its
block of code executes, which includes the inner loop.

Important Note: The code will run the entire nested loop before going to the
next iteration of the parent loop.

Example 2

Demonstrate the mechanics of nested loops by displaying the values of the loop
iterators each time either loop iterates.

Solution

CONTENTS

We can see from both the solution and its result (in the Command Window
output) that the program must complete a total of 2 × 3 = 6 repetitions.

You can mix and match your nested loops. For example, you can do for-for,
while-for, for-while, etc. It just depends on what you need in your solution

https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/for.html
https://www.mathworks.com/help/matlab/ref/while.html

CONTENTS

to a problem. Of course, the general principle of the inner loop being complete
before the outer loop iterates remains true as demonstrated in Example 4.

What is a “flag”?

A programming trick often used in loops (especially nested loops) is something
called flags. Flags are not a special data type; they are simply a way of signaling
in the program. It is kind of like shooting up a flare or raising a physical flag
on a mailbox that another part of the program “sees”. We will use flags in
Examples 3, 4, and 5.

Typically, one would include the phrase “flag” in the variable name to differen-
tiate it from other variables. It is also good practice to write the different states
of the variable when it is first defined. For example, we could define a variable
named stopFlag and write a comment stating “true means the operation should
end”.

When should I use programming flags?

A flag is typically a numeric or Boolean value (Example 3 uses a Boolean flag).
If you need a refresher on Boolean, review Lesson 5.1.

Important Note: You can name the flag variable anything just like
any other variable.

Example 3

Search any given vector to find the first instance of a given number (if it contains
the number). Display a message in the Command Window the first instance
that value is found and where its location is within the vector. Use the vector
vec = [1 3 2 9 4 10 4] and look for the number 4 to test the program.

Solution

CONTENTS

Note that this solution stops if one instance of the desired value is found. You

CONTENTS

can see this since there are two instances of 4 in the given vector, but only one is
displayed. The solution can be modified to find all the instances of the desired
value in an array.

In Examples 3, 4, and 5, Boolean variables are used as programming flags. They
are binary cases that can only either be true or false. This is the most common
use case in programming as it makes things very clear at a glance (e.g., isEmpty
= false, so we know the thing is not empty). However, there are some cases
that have more than two states we would like to represent. In these cases, we
can use numbers or strings as the values for the flag.

You are tasked with developing a program in MATLAB that generates six ran-
dom unique integers in the 1-53 range and stores each integer in a vector called
luckySix. Store each integer in the order in which it was picked (i.e., the first
number generated is stored as the first element of vector luckySix and so on).
The program must display these unique integers in the Command Window.

Example 4

Solution

CONTENTS

One can see that two loops are required to complete this example. In this case,
the inside for loop checks the current random integer against all other previous
chosen integers. The while loop is used because we do not know the exact
number of repetitions it would take to pick six unique integers.

Since this code relies on the rand() function, you should expect to see different

CONTENTS

results from those shown below.

How can I use break and continue in nested loops?

When using break and continue commands in nested loops (i.e., a loop within
a loop), the commands only apply inside of loop it is placed in. Calling break
inside a nested loop will exit that nested loop; however, it will not exit the
parent loop. Example 5 shows how you can exit both loops using a flag. Note
that in Example 5, the break command appears twice: once to exit the nested
loop and once to exit the parent loop.

Important Note: break and continue apply only to the first loop
that contains them.

Make sure you review the lesson on break and continue commands (Lesson
8.3) before trying this example.

Example 5

Demonstrate how to use the break command inside of nested loops. Once the
break command has executed within the inner loop, the program should also
break out of the outer loop.

Solution

https://www.mathworks.com/help/matlab/ref/break.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/continue.html
https://www.mathworks.com/help/matlab/ref/break.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/break.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/continue.html

CONTENTS

CONTENTS

As seen in Example 5, we need to use a second break command to break out of
both loops after our condition occurs. Try removing the second break command
and see what happens!

To make the code a little cleaner, we can remove the explicit check of “true”
or “false” with Boolean flags (variables). In Example 5 above, if stopFlag
functions the same way as if stopFlag == true.

Multiple Choice Quiz

(1). The data type of a flag variable is

(a) char

(b) double

(c) logical

(d) any of the above

https://www.mathworks.com/help/matlab/ref/break.html?s_tid=srchtitle

CONTENTS

(2). The purpose of a programming flag is to

(a) be a signal in a program

(b) make a conditional decision

(c) repeat a body of code

(d) find a number in a loop

(3). Complete the code to generate a random integer between 5 and 14.
number = floor(rand*(____________))+5

(a) 14 - 5 + 1

(b) 14 - 5

(c) 5 - 1

(d) 14 - 0

(4). The Command Window output of the following program is

(a) sum1 = 0

(b) sum1 = 4

(c) sum1 = 12

(d) sum1 = 36

(5). The Command Window output of the following program is

CONTENTS

(a) sum1 = 18

(b) sum1 = 64

(c) sum1 = 120

(d) sum1 = 128

(6). The Command Window output of the following program is

(a) time = 4

(b) time = 5

(c) time = 6

(d) Undefined function or variable 'time'.

(7). The Command Window output of the following program is

(a) num = 6

CONTENTS

(b) num = 3

(c) num = 18

(d) num = 9

(8). What is the Command Window output of the following code?

(a) k = 16

(b) k = 8

(c) k = 0

(d) k = 2

(9). The value of a to make the output of the last line be s = 29 is a =

(a) 4

(b) 6

(c) 24

(d) 29

CONTENTS

Problem Set

(1). Search any given vector to see if it contains a given number. Display a
message in the Command Window each time that value is found and where its
location is within the vector. Use the vector vec = [41 6 2.3 0.2 5 1 5]
and look for the number 6.2 to test the program. Test again with the same
vector and the number 5.

(2). Search the given vector, vec = ['M' 'A' 'T' 'L' 'A' 'B'], to see if it
contains the character 'A'. Display a message in the Command Window each
time that character is found and where its location is within the vector.

Hint: Use the function strcmp() to ensure the program will work for other
inputs (reference Example 2 in Lesson 5.3).

(3). Write a MATLAB program that generates a vector of 8 elements where
each element is a unique random integer in the domain [3, 63].

(4). Generate a matrix of pseudo-random numbers using rand(n), which will
create an 𝑛 × 𝑛 matrix. Check each element of the matrix to see whether its
value is at least 0.7. If a value does not meet this criterion, immediately skip
to the next row of the matrix. Output each element that does not meet the
criteria to the Command Window in the form: Value too low for A(i,j) =
X.

(5). Generate a matrix of pseudo-random numbers using rand(n), which will
create an 𝑛 × 𝑛 matrix. Check each element of the matrix to see whether its
value is at least 0.25. If a value does not meet this criterion, immediately skip
to the next column of the matrix. Output each element that does not meet the
criteria to the Command Window in the form: Value too low for A(i,j) =
X.

Module 8: Loops

Lesson 8.5 – Working with Matrices and Loops

Learning Objectives

After reading this lesson, you should be able to:

• reference matrices inside a loop,

• store multiple values in a matrix,

• access specific portions of a matrix such as the diagonal or the upper
triangle,

• identify a special matrix.

This lesson combines several pieces of programming knowledge you have learned
and used so far including matrices (Lesson 2.6), conditional statements (Module
5), and nested loops (Lesson 8.4) in MATLAB. In this lesson, you will see some
of the nuances and tricks associated with using matrices in loops.

How can I reference matrices in a loop?

As noted in several previous lessons, a vector is a special type of matrix: a
one-dimensional matrix. Everything said about matrices in this lesson will also
(generally) apply to vectors. Also, recall vectors and matrices as mathematical
concepts that were covered in Lesson 4.6 as well as the common MATLAB
functions relating to these concepts such as size(). We will start by showing
examples for referencing both a vector and a matrix in a loop just to be clear.
In this module, we also talked about running a block of code multiple times
using loops. In the case of arrays (vectors and matrices), this is useful when

https://www.mathworks.com/help/matlab/ref/size.html

CONTENTS

referencing many different elements stored inside them: the less “automatic”
alternative is referencing every array element manually.

Referencing an array typically means calling out a specific subset of that array.
For example, given vec = [3 7 5.4 8 9], we could reference the first three
elements with vec(1:3). The values giving the location (e.g., the first and
second elements) of the desired elements are often called the index/indices.
However, it is common to need to reference each element of a given vector. To
do this, we need to use loops.

Example 1

Consider the data given in Table 1 that was collected during axial testing of
a metal specimen. In this test, the value of stress and strain is measured at
various stages of the experiment. We know we can find Young’s modulus of the
metal by finding the relationship between stress and strain.

Table 1: Stress vs. Strain data of a material.

Strain Stress (MPa)
0.001 69
0.002 145
0.003 220
0.004 346
0.005 550

Any element of a vector can be individually “called” for further analysis by
using matrix parenthesis notation as discussed above and in Lesson 2.6. Using
the same parenthesis notation, a loop can be written to display each stress
measurement with the corresponding strain measurement.

Write a program that displays each set of corresponding stress and strain ele-
ments in the Command Window.

Solution

CONTENTS

The two vectors of stress and strain can now be used to generate a stress
vs. strain plot, and to find Young’s modulus of the metal (see problem 4 of
the exercise set of this exercise).

At this point, one might ask, “Why don’t we just do disp(stress)?” This
would not display each element individually. “Well, why not disp(stress(1)),
disp(stress(2)), …” This would not address the “any” part of the question.
The solution should work for any given vector, which means for any given length
(number of elements). So, if you wrote code in that form for a vector with
six elements and then tried to use that code on a vector with four elements,
MATLAB would return an error. If you used that code on a vector with eight
elements, you would get only six out of the eight elements You should try this
for yourself using the solution from Example 1.

CONTENTS

Notice that we can reference a vector with a single loop since one of the dimen-
sions will be held at 1. That is, vec(i,1) and vec(i) are equivalent program-
ming references and evidently only require one iterating (changing) variable in
a loop.

In the next example, which uses a matrix, we will need two loops. Perhaps you
can guess that it is because both the rows and the columns will need iterators
(changing variables). Also, note that we want to “look at” or reference one col-
umn or one row of the matrix per loop iteration. Therefore, we will use a nested
loop where the parent/outer loop remains constant, while the nested/inner loop
runs from the beginning to the- end. In Example 2, this has the effect of looking
at an entire row of the matrix before moving on to the next row. Look at the
outputs to verify this for yourself!

Example 2

Display each element of any given matrix.

Show a test case for the solution using the matrix [𝐴] = [1 2 3
4 5 6]

Solution

CONTENTS

How do I store values in a matrix using a loop?

Often, it is useful to store values obtained in each loop, so you have a vector
or matrix of values at the end of the loop(s). While in the previous example
we referenced values/elements in an existing matrix, here we create a matrix
element-by-element. Figure 1 shows a generalized visualization for storing in a
vector, and Example 3 shows a code that stores values in a vector.

CONTENTS

Figure 1: A visualization of the process for generating a vector.

As discussed earlier in this lesson, the outer loop remains constant for one entire
completion of the inner loop. We will take advantage of this behavior in Example
3 where we want to average the numbers in each column. Therefore, we want to
hold the column number constant (parent loop) while we loop through all the
rows of that column with the nested loop. This means that we will go through
(average) all the elements in the first column, then the second, and so on.

Example 3

Find the average of each column in any given matrix without using use the
built-in functions such as mean() and sum(). Store the averages in a vector and
display the final vector of averages in the Command Window.

Use the matrix given below as a test case.

[𝐵] = ⎡⎢
⎣

5 39
9 14
3 1

⎤⎥
⎦

Solution

CONTENTS

Another real-world example would be if you have a line of code that gets the
pressure inside a tank each time the function is run. However, you want to
plot and analyze this data changing over time. To do this, you will need to
run the sensor read code many times with a loop, and each time the loop runs
(the sensor is read), you will need to store that reading in a vector or matrix
(depending on how many values are returned by the sensor).

CONTENTS

How can I access specific areas of a matrix?

It is useful to understand how to write conditions to reference different parts
of a matrix such as upper triangular, lower triangular, and diagonal portions.
These three conditions are shown visually in Figure 2. To find these or other
locations yourself, just write down the matrix elements, A(i,j), for the area of
the matrix you want to reference and look for a pattern. For example, to find
the condition for all diagonal elements, just write out A(1,1), A(2,2), A(3,3),
A(4,4). You can immediately see diagonal elements always occur when 𝑖 = 𝑗.

Figure 2: Shows conditions to reference different portions of a matrix.

Examples 4 further demonstrates how to access different locations in a matrix.
It also demonstrates how to create a matrix element-by-element, which is just
another way of “storing” values. This is a very common task when programming,
and therefore, it is essential to fully comprehend. Although the difference of
“storing” versus “referencing” may still be foreign, just remember to check which
side (left or right) the equals operator (=) the variable in question is on. This
will always tell you whether the variable is being referenced or assigned a value
(something is being stored in the variable).

Example 4

Write a code that creates a square matrix of the same form like the one shown
in Figure 2. The only input is the size of the square matrix.

Solution

CONTENTS

Notice we need two loops to access every element in a matrix: one loop for each
matrix direction. For vectors, we needed only one loop to access each element.
As you will see in Lesson 8.7 with the sorting example, having a vector as an
input does not always mean you need only one loop. You need at least one loop
to access (or “look at”) each element of a vector individually, but depending on
the problem, you may need more. A similar statement is true for matrices. One
notable, special case is when one only needs to access the diagonal of a matrix.
One such application is shown in Example 5.

CONTENTS

Example 5

The trace of a matrix is defined only for a square matrix (that is, the number
of rows is the same as the number of columns) and is the summation of all its
diagonal elements. For a square matrix [A] of size 𝑛 × 𝑛, the trace of a matrix
[A] is given by

[𝐴] =
𝑛

∑
𝑖=1

𝑎𝑛

Find the trace of any square matrix. The program must also automatically test
if the matrix is square.

Test the program with the following two matrices [A] and [B]:

[𝐴] = ⎡⎢
⎣

2 −1
1 2
6 −6

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

5 43 −1
0 −13 54
2 5 29

⎤⎥
⎦

Solution

CONTENTS

The following Command Window outputs are shown for different matrix inputs.
Notice the first Command Window shown has a non-square matrix, which yields
an error, while the second Command Window output shown is for a square
matrix input.

We can use what we have learned so far in this lesson to test for a specific type
of matrix (Example 6). The only extra information one needs to know in these
cases is the definition of that special type of matrix, which has little to do with
programming skills.

CONTENTS

Example 6

Many a time, it is efficient to solve a set of simultaneous linear equations by
using iterative schemes such as Gauss-Seidel method. In such cases, the conver-
gence of the solution is guaranteed if the coefficient matrix is strictly diagonally
dominant.

To determine if a square matrix is strictly diagonally dominant or not, one
compares the row diagonal element to the row non-diagonal elements. For each
row, the absolute value of the diagonal element must be strictly greater than
the sum of the absolute value of the non-diagonal terms. If this condition is
true for all rows, only then the matrix is strictly diagonally dominant (SDDM).

Mathematically, a square matrix [A] of 𝑛 × 𝑛 size can be defined as strictly
diagonally dominant if

|𝑎𝑖𝑗| >
𝑛

∑
𝑗 = 1
𝑖 ≠ 𝑗

|𝑎𝑖𝑗| for 𝑖 = 1, 2, ..., 𝑛.

Take the following matrix as an example

[𝑆] = ⎡⎢
⎣

−5 1 2
−6 12 3
1 −7 9

⎤⎥
⎦

This is a strictly diagonally dominant matrix because all the rows meet the
criteria as shown below.

| − 5| > |1| + |2|
5 > 3

|12| > | − 6 + |3|
12 > 9
|9| > |1| + | − 7|
9 > 8

Write a program that determines if a square matrix is strictly diagonally dom-
inant (SDDM) or not.

Test the program using the following two matrices, [A] and [B].

[𝐴] = ⎡⎢
⎣

−5 2 2
−6 12 5
0 −7 9

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

−5 3 2
−6 12 6
0 −7 9

⎤⎥
⎦

CONTENTS

Solution

We need two loops to access each element in the matrix. An if statement is
used within the nested loop to sum only the non-diagonal elements. Finally,
the current row non-diagonal sum is compared to the row diagonal element. If
it meets the criteria, it is added to the validRows count. This is done in the
parent loop (i) because the diagonal elements can be referenced with only one
loop. Therefore, placing this code inside the nested loop (j) would needlessly
repeat the code and make the program less efficient.

If at the end of the loops, the number in the validRows variable is equal to the
number of rows of the matrix, then the condition of the matrix being an SDDM
is met.

CONTENTS

The following Command Window outputs are shown for different matrix inputs.
As you can see, the first matrix input is strictly diagonally dominant, while the
second is not.

What is vectorization?

Although it can be a good exercise to perform matrix operations like addition,
subtraction, and multiplication the “long way” (i.e., the non-vectorized way)
when first learning to use loops and work with matrices, it is not standard
practice.
Vectorization is the practice of implementing elemental operations as matrix op-
erations in programs. For example, if you have a system of three equations and
three unknowns, you would vectorize the solution by putting the equations into
matrix form, and find the solution using linear algebra. For many mathematical
matrix operations, you should implement them in MATLAB using “vectoriza-
tion” rather than loops as this takes advantage of the efficiency of MATLAB,
and hence avoid unnecessary complexity in the code.
There are many examples where you can vectorize operations involving matrices
in MATLAB. They include matrix addition, subtraction, and multiplication.
More complex examples are when you combine these operations into equations.
This occurs often in programming in areas like machine learning and state-space
controls.

https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

CONTENTS

How can I vectorize matrix operations in MAT-
LAB

The words “vectorize” and vectorization” may be new to you, but the concepts
and syntax are not. Recall that Lesson 4.6 on Linear Algebra was where we first
learned how to evaluate mathematical expressions and equations that contain
matrices. We did not know anything about loops then, and therefore, the code
we wrote was a vectorized solution! We did this for simple things like addition,
subtraction, and multiplication of matrices as well as more complex tasks like
solving systems of equations in matrix form. We recommend reviewing the
examples from Lesson 4.6 to more fully grasp vectorization.

Examples 7 and 8 compare vectorized and non-vectorized solutions for matrix
operations, which of course will return the same answers. Although it can be
a good exercise to perform matrix operations like addition, subtraction, and
multiplication the “long way” (i.e., the non-vectorized way) when first learning
to use loops and work with matrices, it is not standard practice. When writing
professional code, one should use vectorized solutions in MATLAB whenever
possible. This is because it is the vectorized syntax that has been optimized
to be faster than the equivalent element-by-element loop operations we could
write.

Example 7

Write a program that adds any two matrices (given that the matrices are of equal
size) using element-by-element loops operations and vectorized operations. Use
the matrices [A] and [B] to test your program.

[𝐴] = ⎡⎢
⎣

1 5 8
12 6 3
19 45 0

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

14 75 4
11 13 23
0.5 8 3

⎤⎥
⎦

CONTENTS

You should now be able to see why, in their documentation on vectorization,

https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

CONTENTS

MATLAB lists the compactness of a vectorized matrix operation as improv-
ing the appearance of the code and reducing the complexity (and hence the
likelihood of errors).

Example 8

Write a program that finds the element-by-element product of any two square
matrices of equal size using loops operations and vectorized operations. Use the
matrices [A] and [B] to test your program.

[𝐴] = ⎡⎢
⎣

1 5 8
12 6 3
19 45 0

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

14 75 4
11 13 23
0.5 8 3

⎤⎥
⎦

Solution

CONTENTS

What are some tips I can use for vectorization?

Below are a few tips to keep in mind when you are trying to vectorize equations
containing matrices/vectors.

• Use short variable names for vectors and matrices when possible.

CONTENTS

• Be sure to know what you want to happen and what is happening during
the evaluation (calculation) of your equations in MATLAB. This always
applies to programming.

• Make sure you understand and appropriately use array and matrix oper-
ations (common mistake).

• Use the shorthand (’) for the transpose of a matrix.

Multiple Choice Quiz

(1). The Command Window output of the following program is

(a) ans = 17

(b) ans = 15

(c) ans = 13

(d) ans = 19

(2). The Command Window output of the following program is

(a) q = [1 4 14 8]

(b) q = [1 2 8 5]

(c) q = [1 2 14 8]

https://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html
https://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html

CONTENTS

(d) q = [4 2 6 3]

(3). The Command Window output of the following program is

(a) q = [1 2]

(b) q = [3 2]

(c) q = [1 2 8 5]

(d) q = [3 2 6 3]

(4). The Command Window output of the following program is

(a) count = 0

(b) count = 3

(c) count = 6

(d) count = 9

CONTENTS

(5). The Command Window output of the following program is

(a) sum1 = 2

(b) sum1 = 3

(c) sum1 = 5

(d) Undefined function or variable...

(6). The Command Window output of the following program is

(a) negNum = 0

(b) negNum = -4

(c) negNum = -1

(d) Undefined function or variable...

CONTENTS

Problem Set

(1). Using nested loops, write a program that outputs the sum, [A] + [B] of two
equally sized matrices, [A] and [B]. Test and run your program for the following
two matrices, [A] and [B].

[𝐴] = ⎡⎢
⎣

0 5 −3
1 −7 9
5 5 12

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

14 2 5
1 7 3
1 3 5

⎤⎥
⎦

(2). Using nested loops, write a function that outputs the numeric value of the
difference of two equally sized matrices, [A] and [B]. Test and run your program
for the two following matrices, [A] and [B].

[𝐴] = ⎡⎢
⎣

12 13 10
7 9 13
1 8 12

⎤⎥
⎦

[𝐵] = ⎡⎢
⎣

−14 10 5
−7 7 4
2 0 −9

⎤⎥
⎦

(3). Write your own function, myDot, that finds the vector dot product of two
input vectors. The function inputs are two vectors, vec1 and vec2, and the
output is the value of the vector dot product. Do not use the dot() or similar
MATLAB functions.

Test your function for two vectors
vec1 = [3 -7 23]
vec2 = [-7 0 12]

(4). Without using the sum() function, write a function (myYoung) that outputs
Young’s modulus of a material based on an input of stress vs. strain data. The
stress and strain values must be entered using two vectors, stress, and strain.
The Young’s modulus (E), given the stress (𝜎) and strain (𝜀) values, is found
as

𝐸 =

𝑛
∑
𝑖=1

𝜎𝑖𝜀𝑖

𝑛
∑
𝑖=1

(𝜀𝑖)
2

Test your function with the data provided in Table A.

Table A: Strain and Stress data of a material.

Strain (m/m) Stress (MPa)
0.00010 19.10

CONTENTS

Strain (m/m) Stress (MPa)
0.00012 22.81
0.00100 187.0
0.00150 284.2
0.00180 344.3
0.00220 417.0
0.00260 495.0

(5). Write a program that determines if a square matrix, A is symmetric or not.
A symmetric matrix is where 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all i, j. Matrix [A], given below, is an
example of a symmetric matrix, which you can use to test your solution. The
program needs to work for a square matrix of any size.

[𝐴] = ⎡⎢
⎣

2 8 9
8 4.5 6
9 6 −1

⎤⎥
⎦

(6). Write a program that outputs the value of the summation of the perimeter
elements (outer elements) of a rectangular matrix. Use your knowledge of loops
and/or conditional statements to write the program.

The program input is:
1) a rectangular matrix, rectMat.

The program output is:
1) the value of the summation of the perimeter elements, perimeterSum.

Test and run your program for the following 3 × 4 matrix, rectMat.

⎡⎢
⎣

2 −3 1 0
5 7 1 −4
9 −6 0 2

⎤⎥
⎦

Hint: The summation of the perimeter values for the above matrix is,

2 + (−3) + 1 + 0 + (−4) + 2 + 0 + (−6) + 9 + 5 = 6.

(7). The column sum norm of a rectangular matrix [A] with m rows and n
columns is defined as

𝑛𝑜𝑟𝑚[𝐴] = max
1≤𝑗≤𝑛

𝑚
∑
𝑖=1

|𝑎𝑖𝑗|

CONTENTS

In other words, find the sum of the absolute value of the m elements of each of
the n columns. Then find the maximum of these n values (do not use max(),
min() or similar MATLAB function). This maximum value is the norm of the
matrix [A]. Using your knowledge of loops and/or conditional statements, write
the program that finds the norm of an input matrix. Do not use norm() and
other similar MATLAB functions.
The program input is:
1) a rectangular matrix, mat.
The program output is:
1) the norm of the matrix, normMat.
Test and run your program with the following matrix, mat.

⎡⎢
⎣

25 20 3 2
5 −10 15 −25
6 16 −7 27

⎤⎥
⎦

Hint: Consider the following 2 × 3 matrix, A

[𝐴] = [6 3 −4
2 7 1] .

the norm[A] is found as follows:
Add absolute values of elements of first column, that is, |6| + |2| = 8.
Add absolute values of elements of second column, that is, |3| + |7| = 10.
Add absolute values of elements of third column, that is, |−4| + |1| = 5.
The maximum then of the first, second and third column sum values is maximum
of (8, 10, 5) = 10. The norm of matrix [A], hence, is 10.

(8). A square matrix is considered bisymmetric if it is symmetric about both of
its main diagonals. For example, consider the following 5 × 5matrix:

⎡
⎢
⎢
⎢
⎣

𝐷1 𝑏 𝑐 𝑑 𝐴1
𝑏 𝐷2 𝑒 𝐴2 𝑑
𝑐 𝑒 𝐷3 𝑒 𝑐
𝑑 𝐴2 𝑒 𝐷2 𝑏

𝐴1 𝑑 𝑐 𝑏 𝐷1

⎤
⎥
⎥
⎥
⎦

This matrix is symmetric about both main diagonals D and A, and therefore
considered bisymmetric. Use your knowledge of programming concepts (loops
and conditional statements) to write a program that outputs whether a square
matrix is bisymmetric or not.
The program input is:
1) a square matrix, mat.

CONTENTS

The program output is:
1) “Bisymmetric matrix” or “Not a bisymmetric matrix”

Test and run your program for the two matrices given on the next page.

⎡
⎢
⎢
⎢
⎣

1 2 3 4 5
2 6 7 8 4
3 7 9 7 3
4 8 7 6 2
5 4 3 2 1

⎤
⎥
⎥
⎥
⎦

𝑎𝑛𝑑
⎡
⎢⎢
⎣

3 3 2 −1
3 4 6 0
2 6 4 3

−1 0 3 7

⎤
⎥⎥
⎦

(9). Using loops, write a program that transposes an input row vector. Do not
use the transpose() or equivalent function. The transpose of a row vector is a
column vector. For example

[1 2 3 4]𝑇 =
⎡
⎢⎢
⎣

1
2
3
4

⎤
⎥⎥
⎦

.

Test your program with the following vector.
a = [6 -6 4 13 0 7 2]

(10). Two matrices [A] and [B] can be multiplied only if the number of columns
of [A] is equal to the number of rows of [B]. If [A] is a 𝑚 × 𝑝 matrix and [B] is
a 𝑝 × 𝑛 matrix, then the resulting matrix [C] is a 𝑚 × 𝑛 matrix. So how does
one calculate the elements of [C] matrix?

𝑐𝑖𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + … … + 𝑎𝑖𝑝𝑏𝑝𝑗

for each 𝑖 = 1, 2, … … , 𝑚, and𝑗 = 1, 2, … … , 𝑛.

To put it in simpler terms, the ith row and jth column element of the [C] matrix
in [C] = [A][B] is calculated as multiplying the ith row of [A] by the jth column
of [B], that is,

CONTENTS

𝑐𝑖𝑗 = [𝑎𝑖1 𝑎𝑖2 ⋯ ⋯ 𝑎𝑖𝑝]
⎡
⎢
⎢
⎢
⎣

𝑏1𝑗
𝑏2𝑗
⋮
⋮

𝑏𝑝𝑗

⎤
⎥
⎥
⎥
⎦

= 𝑎𝑖1 𝑏1𝑗 + 𝑎𝑖2 𝑏2𝑗 + ⋯ ⋯ + 𝑎𝑖𝑝 𝑏𝑝𝑗.

=
𝑝

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

Complete the following:

(a). Write a function, myMult, that outputs the result of the multiplication of
two matrices. The inputs are

1. first matrix, [A],

2. second matrix, [B].

The output is

1. the matrix [C], where [C] = [A][B]

If the matrices cannot be multiplied, the output needs to be:
The matrices cannot be multiplied.

(b). Conduct the following tests of the function myMult in a testing m-file

1. Given

[𝐴] = [5 2 3
1 2 7] ,

[𝐵] = ⎡⎢
⎣

3 −2
5 −8
9 −10

⎤⎥
⎦

,

find

[𝐶] = [𝐴][𝐵]

2. Conduct two more appropriate tests of the function.

Module 8: Loops

Lesson 8.6 – Applied Loops

Learning Objectives

After reading this lesson, you should be able to:

• sort matrices and vectors,

• search matrices and vectors,

• sum matrices and vectors,

• plot inside of a loop (repeated plotting),

• use common programming tricks for loops.

Why is this lesson important?

There are a few common tasks using loops that are essential to understand how
to implement them manually. We will cover how to sort, sum, and search in a
vector (and a few other things). These have corresponding MATLAB functions
that do not require you to do any of this, but knowing how to do these things not
only gives you more practice with the programming concepts we have learned,
but it also enables you to implement parts of these strategies in other solutions
you write (that are not available as predefined functions).

Also, note that the content of this lesson is mostly contained in the example
programs, so it is imperative to have a good understanding of these.

CONTENTS

How can I sort an array?

Although there are predefined functions in MATLAB like sort(), it is useful to
understand how to sort a vector manually. Bubble sort compares two adjacent
elements and determines through a condition whether they need to be swapped
to have a sorted vector.

Example 1

Sort any given vector of numbers from smallest to largest. Test the program
with the vector
[v] = [10 4 99 -7].

Note you do not need to use the iterator variable (repeat in this case) for the
parent loop to run.
Solution

https://www.mathworks.com/help/matlab/ref/sort.html

CONTENTS

The nested loop (i) in Example 1 could be made more efficient by referencing the
repeat iterator: for i = repeat:n-1. This is because on the first iteration of
repeat, i = 1:n-1, and the first element of vec is guaranteed to be correctly
sorted at the end of that iteration. On the second iteration of repeat, i =
2:n-1, and the first and second elements of vec are guaranteed to be correctly
sorted at the end of that iteration. You can see that there is a pattern here that
we could take advantage of to write the code more efficiently.

In Figure 1, you can see a visual representation of how two elements are switched
in the bubble sort method seen in Example 1.

Figure 1: Visualization of how two elements are swapped in the bubble sort
method.

In Example 2, we will apply the ideas covered in Example 1 to a matrix. As
noted in the example, this is as simple as adding another for loop to repeat
the process for each “vector” (row or column depending on your choice) in the
matrix.

Example 2

Sort the columns of any given matrix. Test the solution using matrix [B].

CONTENTS

[𝐵] = ⎡⎢
⎣

17 5 4
9 23 0

−2 6 1.1
⎤⎥
⎦

Treat each column as a vector. All we need to do is repeat the vector sorting
process for each column in the matrix. Therefore, we only need to nest Example
1 inside another loop.

Solution

CONTENTS

How can I find the sum of a vector?

It is relatively simple to find the sum of a vector manually, and there is even a
built-in MATLAB function for it called sum(). In fact, we have already covered
summing in a loop when we covered while loops (Lesson 8.1). However, it is
important to pay close attention to the next example as it takes advantage of a
key property of loops to create a summing mechanism, which is itself extremely
common.

Example 3

Find the sum of any given vector. Do not use the built-in MATLAB functions
such as sum().

Test the program with the vector: [𝑎] = [1 565 4 5 8 9 22].

Solution

https://www.mathworks.com/help/matlab/ref/sum.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/while.html?s_tid=srchtitle

CONTENTS

CONTENTS

Figure 2: General form of changing the current value of a value and update
the variable to the new value. Below that, you can see three applications of the
concept.

Some use cases for calling a variable and assigning it a new value on the same
line (see also Figure 2) are:

• i = i + 1

• sign = sign*(-1)

• series = series + newTerm

One can see that the same fundamental concept of calling and assigning variables
is used in each case. When a variable appears on the right side of the equals
sign, the variable is being called (we are asking for its current value). When a
variable appears on the left side of the equals sign, we are assigning the variable
a new value. One needs to fully grasp this concept.

You can get more practice with summing things in a loop by using different
types of series. Also, remember summing can be implemented in a matrix by
recognizing that matrices are just collections of vectors (columns/rows depend-
ing on how you would like to sort).

How can I plot different variations of a function
using loops?

In some cases, we need to plot many different sets of data points, and to avoid
long chains of plot() calls, we can use loops to run one plot() call multiple

http://math.bd.psu.edu/faculty/rutter/InfiniteSeries/CommonInfiniteSeries.html
http://math.bd.psu.edu/faculty/rutter/InfiniteSeries/CommonInfiniteSeries.html
https://www.mathworks.com/help/matlab/ref/plot.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/plot.html?s_tid=srchtitle

CONTENTS

times. (If you need a quick review on plotting, jump to Lesson 3.1.) A few
examples of this are changing part of an equation, hence, changing the vector
of data and the equation to the plot. Example 6 shows the first of these cases
where we multiply a function by a different constant in each iteration and show
them all on the same plot (Figure 3).

Important Note: In general, you should avoid placing lines of code
inside loops that never change between the beginning and end of the loop as
this would make your code less efficient.

Example 4

Using only one plot() call and a for loop, plot the mathematical function,
𝑦(𝑥) = 𝑘𝑒𝑥 from 𝑥 = 0 to 6 for 𝑘 = 1, 2, ..., 5.
Solution

As shown in Figure 3, all five functions are plotted on one plot. One can see that
as the value of k increases, the slope of the function increases. To get appropriate
legend labels in an automated way, we make use of cell arrays, which are, in

CONTENTS

structure, like the vectors and matrices we are familiar with except cell arrays
can hold non-numeric values like strings of text.

To create our legend on the plot, we simply assign legend() our cell array of
strings. If you do not fully grasp the concept of a cell array, that is ok because
it is not the focus of this lesson.

!](./Chapter0806Lesson100AppliedLoopsMedia/media/image5.png){width=“3.7604166666666665in”
height=“2.967199256342957in”}
Figure 3: Figure output for the code given in Example 4.

Although this lesson is certainly not an exhaustive list of common techniques
you might use in loops, it should give you an idea of what to be on the lookout
for. This module should also serve as a lesson in how important experiential
programming skills are.

In the first half of the module, we introduced new syntax related to the fun-
damental programming concept of loops (iterating code). In the second half of
this module, we have covered many different programming solutions using loops
that covered important skills and knowledge but without introducing much new
syntax. This should encourage and motivate you to commit these and any other
programming techniques to memory.

Multiple Choice Quiz

(1). The Command Window output of the following program is

(a) sum1 = 0

(b) sum1 = 4

(c) sum1 = 12

(d) sum1 = 36

(2). The Command Window output of the following program is

CONTENTS

(a) sum1 = 18

(b) sum1 = 64

(c) sum1 = 120

(d) sum1 = 128

(3). The Command Window output of the following program is

(a) A = [4 1 2 5]

(b) A = [5 4 1 2]

(c) A = [5 5 5 5]

(d) A = [1 2 4 5]

(4). The Command Window output of the following program is

CONTENTS

(a) A = [4 1 2 5]

(b) A = [5 4 1 2]

(c) A = [5 5 5 5]

(d) A = [1 2 4 5]

(5). The Command Window output of the following program is

(a) vecSum = 50

(b) vecSum = 150

(c) vecSum = 100

(d) Undefined function or variable 'vecSum'.

(6). The Command Window output of the following program is

CONTENTS

(a) A = [4 1 2 5]

(b) A = [5 4 1 2]

(c) A = [5 5 5 5]

(d) A = [1 2 4 5]

Problem Set

(1). Using your knowledge of loops and/or conditional statements, write a
MATLAB program that determines the value of the following infinite series

𝑓(𝑥) = 𝑥 + 1
2𝑥2 + 1

3𝑥 + 1
4𝑥2 + ….

There are two program inputs

1. the value of x, and

2. the number of terms to use.

There is one program output

1. the numeric value of the series.

Your program must work for any set of inputs. Assume that the value for the
number of terms to use will always be entered as a positive whole number.

Test your program for the following set of inputs:
number of terms = 26
value of x = 0.67

CONTENTS

(2). Write a program to numerically sort any input vector, vec, from smallest
to largest. You may use the bubble sort program shown in Example 1 of this
lesson as a guide. Test and run your program for the following vector vec =
[8, 2, 16, 12, 2, 5].

(3). Write a program to numerically sort any input vector, vec, from largest to
smallest. You may modify the bubble sort program shown in Example 1 of this
lesson. Test and run your program for the following vector vec = [8, 2, 16,
12, 2, 5].

(4). A typical alarm clock has the following features: (1) alarm set time, (2)
current time, and (3) desired “snooze” time. Use your knowledge of loops (for-
end and/or while-end) and conditional statements to write a MATLAB program
that outputs the wake up time of an individual using an alarm clock. The
program inputs are:

1. Alarm set time (disregard AM and PM setting), alarmSet as a vector
with 1 row and 2 columns, with the first element being the hour and the
second element being the minutes.

2. Initial “snooze” time, snooze. (This time value is always ≥ 4 minutes)

3. Number of times the “snooze” button is used, n. (0 ≤ 𝑛 ≤ 50)

Each time the snooze button is used after the first use, the snooze time decreases
by 1 minute. However, the minimum snooze time is 4 minutes.

The program output is (after the snooze button is hit n times):

1. Final wake up time, wakeup as a vector with 1 row and 2 columns, with
the first element being the hour and the second element being the minutes.

Test the program using this example: If the alarm set time is at 7:30 and is
entered as alarmSet = [7 30], the initial snooze time is set at 8 minutes, and
the snooze button was hit 6 times, the wake up time is 8:04 (overall snooze time
is: 8+7+6+5+4+4=34), hence wakeup = [8 4].

(5). Using your knowledge of loops and/or conditional statements, write a
MATLAB program that conducts the following summation,

𝜎 =
𝑛

∑
𝑗=1

(𝑎𝑥(𝑗) + 𝑒𝑦(𝑗))

CONTENTS

where,

𝑎 = real constant
𝑦 = 0.367𝑎𝑗

𝑥 = {4.5𝑦 + 0.5𝑗𝑦 < 2
𝑗𝑦 ≥ 2

The program has two inputs, the number of terms to use, n and the value of the
constant, a. The program has one output, the numeric value of the summation.
Do not use the sum or similar MATLAB function to complete this problem.

Test and run your program for the following set of inputs: a = 0.75 and n =
30.

(6). Without using the max(), min(), or sort() functions, write your own
MATLAB program that finds the minimum and maximum element of any input
vector. Output the original vector, and the minimum and maximum elements.
Test your program for the following input vector vec = [12, 9, -10, 8, 8.9,
-7.8, 15].

(7). The secant method is used to approximate the value of the root(s) of
an equation f (x)=0. The secant method requires the user to make two initial
guesses x0 and x1 of the root of the equation, but which do not necessarily need
to bracket the root. The secant method iterative formula is given by

𝑥𝑘+1 = 𝑥𝑘 − 𝑥𝑘 − 𝑥𝑘−1
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)𝑓 (𝑥𝑘) , 𝑘 = 0, 1, 2, 3,…

where,
𝑥𝑘+1 is the current approximation,
𝑥𝑘 is one of the previous approximations,
𝑥𝑘−1 is the other previous approximation.

This process is repeated until the root is found.

Write a program that uses the secant method to find the approximate root(s)
of an equation. The program inputs are, the function f, the first two guesses,
x(1) and x(2), and the number of iterations to conduct, n. The output is the
approximate value of the root of the equation, rootVal.

Although not required, use vectors to store the approximations of the root. Your
developed vector will contain n+2 elements.

Hint: Be sure not to use same numbers for the initial two guesses, and only
use a reasonable number of loop repetitions.

CONTENTS

(8). Without using the max(), min(), or similar MATLAB functions, write
a program that outputs the maximum and minimum element values of any
rectangular matrix.

The program input is:

1. a rectangular matrix, mat.

The program outputs are:

1. the maximum value, big, and

2. the minimum value, small.

Test and run your program for the following matrix, mat.

⎡
⎢⎢
⎣

−1 0 2
7 −4 12
4 8.2 11

−11 0 −12

⎤
⎥⎥
⎦

(9). Write a program in MATLAB that for a square matrix subtracts the sum
of the absolute value of the elements above the diagonal from the product of
the absolute value of the diagonal elements. Do not use the sum() or any other
similar MATLAB functions to solve this problem. Use your knowledge of loops
and/or conditional statements to write the program.

The program input is:

1. a square matrix, A.

The program output is:

1. the value of the difference, processedMat.

Test and run your program for the following 4 × 4 matrix, A.

⎡
⎢⎢
⎣

3 7 10 −15
3 −1 5 0
66 11 5 1
0 −5 2 2

⎤
⎥⎥
⎦

CONTENTS

Hint:
The product of the absolute value of the diagonal terms is
= |3| × |−1| × |5| × |2| = 30.
The sum of the absolute value of the terms above the diagonal is
= |7| + |10| + |−15| + |5| + |0| + |1| = 38
The value processedMat for the above matrix is = 30 − 38 = −8.

CONTENTS

Module 9: READING
FROM AND WRITING
TO FILES

Lesson 9.1 – Reading from Files

Learning Objectives

After reading this lesson, you should be able to:

• read numeric and non-numeric data into MATLAB,

• read text (.txt) file contents into MATLAB,

• read Excel file contents into MATLAB,

• use the concept of a delimiter and commonly used delimiters.

This lesson begins our discussion on data import and export in MATLAB. For
a full list of how to load other data types (such as images, audio, and video)
into MATLAB, see the documentation on “Supported File Formats for Import
and Export”. We will only cover files that contain text data (alphanumeric
characters) in this course. We will also focus on text (.txt) and Excel (.xls) files
to keep things consistent and simple, but you can review the documentation
linked above for specifics on how to use many other common file types.

Why read data from a file?

Applications with large data sets can become laborious and inaccurate if one
has to manually input data as variables and arrays into an m-file. Suppose

http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html

CONTENTS

that you are a research engineer working in the materials division of a large
company. Your job is to write a program in MATLAB that can determine
Young’s modulus of a material from a set of stress vs. strain data, which will
be collected from an experimental setup. A data acquisition system from the
experiment will store hundreds (if not thousands) of stress and strain values in
a file. Entering this data into a m-file would be a long and laborious process
subject to entry errors. Obviously, it would be much better to have MATLAB
read the data directly from the external (it is external to MATLAB) file.

How do I read numeric-only data from files?

There are several ways to read from files in MATLAB. If your file only contains
numeric characters, the simplest way to read the data into MATLAB is with
dlmread(). It will read the entire contents of the file, which you can store in a
numeric variable such as a numeric vector or matrix (as seen in Example 1).

Important Note: The data contained in the file must be numeric
in order for dlmread() to read the data into MATLAB. Otherwise, MATLAB
will throw an error.

Example 1

Read numeric data (shown below from a Notepad window) into MATLAB from
a .txt file using dlmread(). Display to the Command Window the following:
all the data, the first row be itself, and the sum of the first two elements in the
first row.

Tabs are used as delimiters (or separators) in this file, which we specify as ‘\t’.
Once the data has been read from the file by dlmread(), it is automatically put
into a matrix, just like we are used to working with, that contains data. We can
use all the normal matrix operations on it.

Solution

https://www.mathworks.com/help/matlab/ref/dlmread.html

CONTENTS

CONTENTS

What is a delimiter?

The “delimiter” in a file is what separates one element (number, word, etc.) from
another. Delimiters separate the “columns” of data from each other. Similar to
the syntax for creating columns in a matrix in MATLAB, common delimiters
for text data include tabs (‘\t’), spaces (’ ‘), and commas (’,’). Note the single
quotes are required since they are entered as strings. As you can see in the
output from Example 1, dlmread() automatically puts the data from the file
into a matrix format where delimiters define the separate columns and the new
lines denote a new row (like hitting “Enter” on the keyboard in the text file) in
the output matrix.

How can I read numeric and character data from
files?

The method we use to read the data in the file depends partially on the datatype
of the data we want to read. Although dlmread()is fast and easy, it cannot
handle files that store non-numeric data such as text strings. So, if you have a
file that contains any characters, you must use another method.
The method also depends on the type of file where the data is stored. For
example, if we want to read data from an Excel file (.xls, .xlsx, etc.), a good
way to accomplish this in MATLAB is with the xlsread() function. With
xlsread(), both numeric and text data can be read while keeping the syntax
very simple. Carefully review the use of xlsread() in Example 2 as a specific
form must be used to have text data returned.

https://www.mathworks.com/help/matlab/ref/dlmread.html

CONTENTS

Example 2

Read data (shown below from an Excel window) into MATLAB from an Excel
file using xlsread(). Display all the data to the Command Window including
both numeric and text data.

Solution

CONTENTS

CONTENTS

In the solution, the xlsread() function is called with three outputs. This is
done so that we can see all of the numeric and character (text) data in the file.
Calling xlsread() with only one output (e.g., data = xlsread(filePath))
will return only the numeric data. For the text and raw data outputs, there
are many helpful MATLAB functions to process and reformat the string data
contained in the cell arrays. We covered some of these functions in Working
with Strings (Lesson 2.3), but there are others that you can investigate if you
are working on a similar problem in the future.

Another method we can use to read in a file with both character and numeric
data is shown in Example 3, and it uses the function fgetl(). The downside
of this function is it takes a little more code to read the data into MATLAB,
and is explained in Example 3. However, this method demonstrates a more
fundamental approach that is, therefore, more universal. Understanding this
method can also be useful in debugging errors in file input/output.

Example 3

Read data (shown below from a Notepad window) into MATLAB from a .txt
file. Display all the data to the Command Window including both numeric and

https://www.mathworks.com/help/matlab/ref/fgetl.html?s_tid=doc_ta

CONTENTS

text data. Also find the volume of an object (cuboid) described by the data
in the file assuming the numbers describe the dimension of the box along that
axis.

Solution

CONTENTS

CONTENTS

To open the file for reading, we use fopen(). To watch for the end of the file,
we can use feof(), which checks the next line from the current one to see if
there is any data. If feof() does not see any data on the next line, it will return
a 1. Otherwise, it returns 0. Finally, we use fclose() to close the file we are
reading. We did not need to do this for dlmread() or xlsread() because those
functions close the file automatically when they are done reading.

fgetl() returns a string. If we want to reformat the line, to work with numeric
data for example, we can use split() to separate the pieces of the string. From
there, we can use the str2double() or similar to convert to the desired data
type (see Data Types (Lesson 2.5) for more details on conversion).

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Usage
Read a file containing numeric-only data
into MATLAB

dlmread() dlmread(myPath,'\t')

Read an Excel file containing numeric and
character data into MATLAB

xlsread() [num,text] =
xlsread(myPath)

Open a file for reading from or writing to
with MATLAB

fopen() fileID =
fopen(myPath,
'r')

Close a file MATLAB has opened fclose() fclose(fileID)
Check to see if the end of an open file has
been reached

feof() feof(fileID)

Read a line from a file with MATLAB fgetl() fgetl(fileID)

https://www.mathworks.com/help/matlab/ref/fopen.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/feof.html
https://www.mathworks.com/help/matlab/ref/feof.html
https://www.mathworks.com/help/matlab/ref/fclose.html
https://www.mathworks.com/help/matlab/ref/fgetl.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/split.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/str2double.html

CONTENTS

Task Syntax Usage
Split a string split() split(strLine)
Convert a string to a double data type str2double()str2double(var)

Multiple Choice Quiz

(1). The dlmread() function can read files containing

(a) numeric-only

(b) character-only

(c) numbers and characters

(d) None of the above

(2). The xlsread() function can read files containing

(a) numeric-only

(b) character-only

(c) numbers and characters

(d) None of the above

(3). The function to open a file for reading is

(a) fgetl()

(b) fopen()

(c) fprintf()

(d) open()

(4). To read a line of an external text file, the function is

(a) fgetl()

(b) fopen()

(c) read()

(d) fprintf()

https://www.mathworks.com/help/matlab/ref/dlmwrite.html
https://www.mathworks.com/help/matlab/ref/dlmwrite.html

CONTENTS

(5). You are asked to open the file, ‘problem3.txt’, for reading. Which is the
correct choice to complete the following code (your choice will be added at the
end of the given m-file)?

(a) open(file)

(b) fopen(file,'r')

(c) fopen(file,'w')

(d) fopen(file,'o')

Problem Set

(1). Make a text file as shown in Figure A.

Figure A: Data file for Exercise 1.

Using MATLAB, write a program that reads the above data file and sums all
of the numbers in the first and second rows separately (you should have two
sums). Multiply the sum of the first row by the sum of the second. Display the
input vectors, and the output product in the Command Window using fprintf()
and/or disp().

(2). Read the data from the text file into MATLAB and store it in a matrix.
The first column of [A] contains the x data and the second column contains the
y data. Plot the data on a 2D plot and label each of the two axes.

[A] =

⎡
⎢
⎢
⎢
⎢
⎣

1 1
2 4
3 9
4 16
5 25
6 36

⎤
⎥
⎥
⎥
⎥
⎦

CONTENTS

(3). A fuel cell on a satellite is used to power a servomotor. The fuel cell
heats up while it is powering the motor. To measure the cooldown time, the
interior temperature of the fuel cell is recorded once it is turned off. The text
document in Figure B provides the temperature and corresponding time data
points. The first column is the temperature (Celsius) of the cell, and the second
is the corresponding time (sec).

Read the text file in Figure B by an m-file into two vectors to store the data
(temp and time). Plot the temperature of the fuel cell vs. time. Use appropriate
figure title and axis labels.

Figure B: Fuel cell temperature and time measurements.

(4). To find contraction of a steel cylinder, one needs to regress the thermal
expansion coefficient data to temperature. The data is given below.

Table D: The thermal expansion coefficient of steel at given temperatures.

Temperature, T, (∘F) Coefficient of thermal expansion, 𝛼, (in/in/∘F)
80 6.47 * 10^-6
40 6.24 * 10^-6
-40 5.72 * 10^-6
-120 5.09 * 10^-6
-200 4.30 * 10^-6
-280 3.33 * 10^-6
-340 2.45 * 10^-6

CONTENTS

Put the above data in a two-column format in a text file.

(a) Read the above data into two vectors, temp and alphaVal.

(b) Fit the above data to by using the polyfit() function. Plot the regression
model along with the data points. Use proper axis labels, title, and legend in
the figure.

(c) Find the predicted value of the coefficient of thermal expansion at T =
−100∘F.

(d) If the steel cylinder is dipped in a dry-ice/alcohol bath, the diametric
contraction, �D, in the steel cylinder is given by

Δ𝐷 = 𝐷 ∫
𝑇𝑓

𝑇𝑟

𝛼𝑑𝑇

where,

𝐷 = outer diameter of the cylinder,
𝑇𝑟= room temperature,
𝑇𝑓= dry-ice/alcohol temperature

Find the diametric contraction.

(e) The contraction obtained in part (d) is not adequate, as specifications
require a diametric contraction of at least 0.02”. Find the temperature of the
cooling medium you would need to achieve that much contraction.

(f) Find the rate of change of diametric contraction at and. What do you
conclude from these results?

(5). Write a MATLAB program that reads the input text file given in Figure C,
and outputs (to the Command Window) the longitudinal Young’s modulus of
the composite material. To find the Young’s modulus, you may use the following
regression model

𝐸 = ∑𝑛
𝑖=1 𝜎𝑖𝜀𝑖

∑𝑛
𝑖=1(𝜀𝑖)2

where,

𝐸 is Young’s modulus (Pa),
𝜀 is the strain (m/m),
𝜎 is the stress (Pa),

CONTENTS

𝑛 is the number of data points.

A tensile test of a composite material has provided the stress-strain data that
is given in Figure C. The strain (cm/cm) and stress (MPa) are given in the first
and second columns, respectively.

Use the fprintf() function with %e format to display your output in the Com-
mand Window. Be sure to note the units.

Figure C: Strain and stress values of a composite material.

Module 9: READING
FROM AND WRITING
TO FILES

Lesson 9.2 – Writing to Files

Lesson Objectives

After reading this lesson, you should be able to:

• write numeric data to text files using MATLAB,

• write numeric data to Excel files using MATLAB,

• write non-numeric data to text files using MATLAB,

• write non-numeric data to Excel files using MATLAB,

• apply the concept of a delimiter when writing data.

How can I write numeric data to files with MAT-
LAB?

Many of the concepts we learned when reading from files in Lesson 9.1 using
dlmread() are also applicable when we use dlmwrite() for writing to a file.
dlmwrite() is not the only method for writing to files, but it is one of the most
straightforward. Similarly to dlmread(), dlmwrite() can only handle numeric
data. Also, although we focus on writing to text files here, dlmwrite() is also
compatible with the common .csv (comma separated values) file format.

https://www.mathworks.com/help/matlab/ref/dlmread.html
https://www.mathworks.com/help/matlab/ref/dlmwrite.html
https://www.mathworks.com/help/matlab/ref/dlmwrite.html
https://www.mathworks.com/help/matlab/ref/dlmread.html
https://www.mathworks.com/help/matlab/ref/dlmwrite.html
https://www.mathworks.com/help/matlab/ref/dlmwrite.html

CONTENTS

Example 1

Write the numeric-only data given in matrix [A] to a file called ‘numeric_data.txt’
using dlmwrite().

[A] = ⎡⎢
⎣

10 5 11
89 0.1 4
16 46 9

⎤⎥
⎦

Solution

Note, the generated file shown in Figure 1 is opened in WordPad. This is be-
cause NotePad does not recognize end-of-line characters and would not properly
display the matrix without adding some additional parameters to dlmwrite().
This is a minor detail and not something to be concerned about.

CONTENTS

Figure 1: The opened file that contains the data we wrote to it in Example
1. You can use WordPad or equivalent program to create/edit .txt files.

We do not need to tell dlmwrite() to create a file as it will do so automatically
if the file does not already exist. If a file does exist, it will overwrite the data
contained in the file unless the append parameter is used (see documentation).
Likewise, it will open and close the file automatically.

How can I write non-numeric data to files with
MATLAB?

To write mixed data types (for example, numbers and strings), we need a way to
store the data we want to write, and we need a write (or “print”) function that
can handle both numeric and nonnumeric data. Previously, we used fprintf()
to print messages to the Command Window, but now we will use it to write
data to a text (.txt) file. The syntax and function of fprintf() are almost
exactly the same in this application except we now need to give it the fileID,
which is a unique identifier for that file (in case multiple files are open), to write
to as seen in Example 2. You can see the lesson on Reading from Files (Lesson
9.2) for details on why we need fopen() and fclose().

Example 2

Write non-numeric (strings) and numeric (numbers) data to a file named
‘nonnumeric_data.txt’. Write the data given in the matrix [A] to the file. The
first column of the file should be a label for each row in the form “first row”,
“second row”, etc. For example, the first row written to the text file should
read “first row 10 5 11”.

https://www.mathworks.com/help/matlab/ref/dlmwrite.html
https://www.mathworks.com/help/matlab/ref/fprintf.html
https://www.mathworks.com/help/matlab/ref/fprintf.html
https://www.mathworks.com/help/matlab/ref/fopen.html

CONTENTS

[A] = ⎡⎢
⎣

10 5 11
89 0.1 4
16 46 9

⎤⎥
⎦

Solution

CONTENTS

Figure 2: The opened file that contains the data we wrote to it in Example 2.

You can use Notepad, WordPad, or equivalent program to create/edit .txt files.
As you can see in the opened text file in Figure 2, each row of the data is written
to a line in the text file. In Example 2, all the strings are in the first column, so
we knew which columns would contain only strings and which only numbers.

In some cases, you may want to write data in a more readable format such
as to an Excel spreadsheet using xlswrite() or to a table format using
writetable(). Example 3 shows how to write data to an Excel file using the
xlswrite() function. As mentioned in Lesson 9.1, you can review MATLAB
documentation on “Supported File Formats for Import and Export” for a quick
reference on all the different options.

Example 3

Write non-numeric (strings) and numeric (numbers) data to an Excel file named
‘mixedData.xlsx’. Write the data given in matrix [A] to the file. The first
column of the file should be a label for each row in the form “first row”, “second
row”, etc. For example, the first row written to the text file should read “first
row 10 5 11”.

[A] = ⎡⎢
⎣

10 5 11
89 0.1 4
16 46 9

⎤⎥
⎦

Solution

https://www.mathworks.com/help/matlab/ref/xlswrite.html
https://www.mathworks.com/help/matlab/ref/writetable.html
https://www.mathworks.com/help/matlab/ref/xlswrite.html
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html

CONTENTS

As seen in Figure 3, the rows and columns of the cell array in MATLAB are
written as rows and columns in the Excel spreadsheet.

CONTENTS

Figure 3: The opened Excel file that contains the data we wrote to it in
Example 3.

Lesson Summary of New Syntax and Program-
ming Tools

Task Syntax Usage
Write to an Excel file xlswrite() xlswrite(filePath,array)
Write to a text file dlmwrite() dlmwrite(filePath,array)

Multiple Choice Quiz

(1). The dlmwrite() function can write data containing

(a) numeric-only

(b) character-only

(c) numbers and characters

(d) None of the above

(2). Appending data to a file means MATLAB will

https://www.mathworks.com/help/matlab/ref/dlmwrite.html

CONTENTS

(a) Erase all the data in the file and then write the new data

(b) Add the new data to the beginning of the file and leave existing data intact

(c) Add the new data to the end of the file and leave existing data intact

(d) do nothing because MATLAB cannot append data

(3). To open a file for writing, the correct choice is

(a) fopen(filePath)

(b) fopen(filePath,'r')

(c) fopen(filePath,'w')

(d) fopen(filePath,'o')

(4). To write a line to an external text file, the most appropriate function is

(a) fgetl()

(b) fopen()

(c) read()

(d) fprintf()

(5). Complete the code to output the variable, a, to the text file, fo.

(a) fprintf(fwrite,'The number is %g',a)

(b) fprintf('The number is %g',a)

(c) fprintf(fwrite,'The number is %g')

(d) disp(fwrite,a)

Problem Set

(1). Use the rand() function to generate some “sensor readings”. Assume our
pseudo-sensor reports location in 3D space, and create “readings” for each axis
(x, y, z). Pick a range that makes sense to you and generate at least 100
numbers for each variable. Write each of these variables to a text file (.txt) and
an Excel file (.xlsx). The first column in the file should be the time associated
with the sensor reading. Assume time starts at 0 and readings are taken every
0.01 seconds. The first row in the file should have a label for each row: namely,
“time”, “x”, “y”, “z”.

CONTENTS

(2). Create the text file shown below in Figure A, which contains polar coor-
dinates (r, 𝜃). Read the file into MATLAB, convert the polar coordinates to
Cartesian coordinates (x, y), and write the Cartesian coordinates to an Excel
file called ‘cartCoords.xlsx’. The first row should be the labels for each column
(“x” and “y”).

Figure A: A text file containing polar coordinate data.

(3). The Young’s modulus was calculated from discrete data in Lesson 9.1
Exercise 3. Append the text file that was used in Lesson 9.1 Exercise 3 with the
calculated Young’s modulus and a description (e.g., “The Young’s modulus is
…”) with appropriate units. Be sure not to overwrite the original data contained
in the text file.

(4). Write matrix [D], given below, to a text file. In the same file, on separate
lines, write:

• “The size of the matrix is …”

• “The norm of the matrix is …”

• “The trace of the matrix is …”

[D] = ⎡⎢
⎣

16 2 3
5 11 10
9 7 6

⎤⎥
⎦

CONTENTS

Hint: To avoid hardcoding, you use loops to write the matrix such that your
solution will work for a file containing any number of rows. Assume that [D]
will be of size 3 × m (i.e., it will always have three columns).

(5). Using the solution from Lesson 9.1 Exercise 1, append the sum of each row
to the same m-file (‘exercise1.txt’) in the form “The sum of row X is …”. Use
loops such that your solution will work for a file containing any number of rows.

CONTENTS

Module 9: READING
FROM AND WRITING
TO FILES

Lesson 9.3 – Navigating Directories in MATLAB

Lesson Objectives

After reading this lesson, you should be able to:

• change the current directory,

• make directories (folders),

• remove directories (folders),

• loop through directory structures.

How do I set the current working directory for
MATLAB?

Setting the working directory/folder in MATLAB means you are telling MAT-
LAB where you want it to look for and work with files. That is, the working
directory is the directory/system folder from which you are currently working.
The current directory is usually set to the location of your last active m-file (the
last one you ran). To view or output your current working directory, use the
pwd (“print working directory”) command. To change the working directory,
use the cd (“change directory”) command.

https://www.mathworks.com/help/matlab/ref/pwd.html
https://www.mathworks.com/help/matlab/ref/cd.html

CONTENTS

You can use the function dir() to create a directory struct array. This struct
array will then have file attributes (information) such as names or size for that di-
rectory, which can be referenced via dot notation (e.g., myFolder.name). dir()
is useful if your m-file is in a different directory (folder) than the data files you
want to access, which we will demonstrate in Example 2.

Example 1

Create a struct variable containing a directory’s information. Display the name,
bytes, and isdir fields to the Command Window.

Solution

https://www.mathworks.com/help/matlab/ref/dir.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/struct.html
https://www.mathworks.com/help/matlab/ref/dir.html?s_tid=srchtitle

CONTENTS

CONTENTS

The first output we see from Example 1 are the file attributes contained in the
struct array (dataLocation) that we created using dir(). Next, we can see the
outputs from the name, bytes, and isdir fields of the struct array (dataLocation)
in table form. For the list of names, notice the first two entries are “.” and “..”,
which are hidden folders in Windows. If you are on macOS watch out for
“.DS_Store” hidden files. That means you will not be able to see them if you
look in that directory (see Figure 2) unless you have specifically told Windows
to show you those hidden folders. Most of the time, you do not have to worry
about or deal with hidden files and folders. The exception is when you want to
loop through all of a directory’s contents.

The directory structure used in Examples 1, 2, and 3 (see Figure 2) has a
parent directory called “Example Directory” (a folder containing all the data).

https://www.mathworks.com/help/matlab/ref/struct.html
https://www.mathworks.com/help/matlab/ref/dir.html?s_tid=srchtitle
https://www.mathworks.com/help/matlab/ref/struct.html

CONTENTS

Within the parent directory, there is a folder for “Category A” and one for
“Category B”. Finally, within each “Category”, there are three group fold-
ers: “Group 1”, “Group 2”, and “Group 3”. An example file path would be:
“C:\Users\MechPlus\Example Directory\Category A\Group 2\file1.txt”.

Figure 2: File structure used in Examples 1, 2, and 3. On the left, you can
see the folder contents view. On right, is a tree view for the same directories.

How can I loop through the contents of a direc-
tory?

Sometimes you will have to look through and extract data from many files in
many directories. To automate the process of looking through and opening
files and folders, we can use the name field of a directory struct array, which
gives the user the folder/file name of the item. Note that this field itself is an
array with a size equal to the number of items contained in the directory. For
instance, in Example 1, the field was an array of six elements (names). Example
2 demonstrates how to use this field to loop through any directory’s contents
without knowing the contents’ folder/file names.

In our case, we have three directory levels to loop through (“Category”,
“Group”, and the files in each group). To access all of the files and folders
contained in each category, we will need three loops: one for each level. We
mimic the structure of the directory by nesting the loop for “Group” within
the loop for “Category” and the loop for the files in each group within the loop
for “Group”.

Important Note: If you are using MATLAB on Windows, you must
account for any hidden files and folders when automatically searching/looping
through directories.

CONTENTS

Example 2

Loop through and read all the files contained in the directories shown in Figure
2.

Solution

CONTENTS

CONTENTS

Another way to ignore unwanted files and/or folders is to use the wildcard
character, *. You can see this in Example 2 where we ignore files that are not
text (.txt) files. The wildcard character can be used at the beginning or in the
middle of a file/folder name. For example, “trial*.txt” would include all files
that begin with “trial” and end with “.txt”.

To make Example 2 a little more compact, we could ignore the hidden files
using the wildcard character with the dir() function. Try editing Example 2
to accomplish this yourself. Remember to start the loop from 1 in that case.

CONTENTS

Note that the solution given in Example 2 will always ignore the hidden folders.
This solution can be useful if you have many different folder names at each level,
which would make using the wildcard character less efficient.

How can I create a new folder (directory) with
MATLAB?

We saw in Lesson 9.2 that MATLAB will create a file to write data to if it does
not exist. However, MATLAB can also create directories (folders) for you using
the command mkdir; though, it does not do this automatically in most cases.
The inverse (removing a folder) is accomplished with rmdir.

Important Note: Be careful using rmdir to remove directories. Remov-
ing a directory using rmdir will not send the directory/folder and its contents
to the system trash bin and cannot be recovered!

Example 3

Make a new folder called Category D in the directory shown in Figure 2 using
MATLAB.

Solution

https://www.mathworks.com/help/matlab/ref/mkdir.html
https://www.mathworks.com/help/matlab/ref/rmdir.html
https://www.mathworks.com/help/matlab/ref/rmdir.html
https://www.mathworks.com/help/matlab/ref/rmdir.html

CONTENTS

CONTENTS

Lesson Summary

Task Syntax Usage
Print working directory pwd pwd
Change current directory cd cd 'myPath'
Create a directory struct array dir() dir('myDirectoryPath)
Create a new folder mkdir mkdir 'New Folder'
Remove an existing folder rmdir rmdir 'Folder'

Multiple Choice Quiz

(1). The pwd command

(a) returns the MATLAB working directory

(b) returns the password for your MathWorks account

(c) returns the password for your Windows account

(d) erases the given directory

CONTENTS

(2). The dir() function does not return

(a) the names of the items in a directory

(b) the sizes of the items in a directory

(c) the data contained in files in a directory

(d) whether the item is a directory or not

(3). The dir() function creates a ________ variable that contains infor-
mation about the contents of the directory.

(a) struct

(b) string

(c) numeric

(d) logical

(4). The rmdir command

(a) remakes the given directory (erases the contents, but leaves the > folder)

(b) moves the directory to the Recycle Bin (in Windows)

(c) permanently deletes the directory

(d) makes a new folder inside the current directory

(5). The cd command can change the location of the

(a) install directory of MATLAB

(b) executed m-file

(c) current directory

(d) None of the above

Problem Set

(1). In this exercise, you will create the necessary folders and files to test the
solutions you write in exercises 2-6.

Recreate the directory (folders) shown in Figure A where there are two levels
of folders. Two levels mean one parent folder (like “Exercise 1”) and one level
of subfolders called “Level A”, “Level B”, “Level C”.

CONTENTS

Figure A: Directory structure for use in the excises.

Within each subfolder (“Level *”), you will need to create some files. This
should look like those files shown Figure B: two text files and two Excel files
inside of each “Level”. In some exercises, you will only read text files or only
Excel files. You can easily account for this in your solution using a conditional
statement or wildcard character, which were techniques shown and described in
this lesson.

Figure B: An example of what the contents of each “Level” folder should be.

Within each file that you create, you will need to enter some data to read. Make
the data in each file unique, so each file is identifiable from the data. You can
quickly and easily do this by creating the numeric contents of the files using
magic() or rand() in MATLAB and then copying those numbers to the files.
Each exercise will specify what type of data the files should contain (numeric,
non-numeric, or mixed). Examples of what text (.txt) and Excel (.xlsx) files
should look like are given in Figures C and D.

Figure C: An example of what the contents of a text (.txt) file might look like.

CONTENTS

Figure D: An example of what the contents of an Excel (.xlsx) file might look
like.

Note: For all the exercises given below, you should write your so-
lutions without hardcoding the names of any of the folders/files you
are reading from. Use the appropriate MATLAB syntax to read all
the files no matter what the folder/file names are.

(2). Task: Make a struct variable for a folder/directory using dir() and display
info (fields) for that folder/directory in the Command Window.

Testing: To test this program, input the folder path to one of the folders you
created in Exercise 1 or any other folder.

(3). Task: Create a MATLAB function using, in part, your solution from Ex-
ercise 2. The function should read data in from the directory (folder) structure
with two levels (see explanation in Exercise 1).

The function should read data for all Excel files contained in the folders where
the Excel files can contain numbers, text, or both types of data. Display the
data in the Command Window.

Testing: To test your program, use the folders and files you created in Exercise
1. Make the contents of the Excel files be labels in the first row and numbers
in all the following rows.

(4). Setup: Using the function you created in Exercise 3, read all the data con-
tained in Excel files from any directory structure with two levels (see explanation
in Exercise 1). You are told the files contain only numeric data.

CONTENTS

Task: Find the sum of each row in each file. Store these sums in a vector in
MATLAB, and output the vector to the Command Window.

Testing: To test your program, use the folders and files you created in Exercise
1. Make the contents of each Excel file be an n × n matrix.

(5). Setup: Modify the function you created in Exercise 3 to read all the
data contained in text files from any directory structure with two levels (see
explanation in Exercise 1). You are told the files contain only numeric data.

Task: Find the average of each row for the matrix contained in each file, and
append the averages to that file.

Testing: To test your program, use the folders and files you created in Exercise
1. Make the contents of each Excel file be an n × n matrix (You can use the
same ones from).

(6). Setup: Modify the function you created in Exercise 3 to read all the data
contained in Excel and/or text files from any directory structure with two levels
(see explanation in Exercise 1). You are told the text file contains only numeric
data in two columns (size n × 2).

Task: Plot the data on a 2D plot where the numbers in first column are the x
data points and the numbers in the second column are the y data points. There
should be one line for each file on the same plot. Make a legend that shows the
filename associated with each set of data (plotted line).

Testing: To test your program, use the folders and files you created in Exercise
1. Make the contents of each file be two columns of numbers (size n × 2).

	Front Cover
	Information
	License
	Dedication
	Thoughts
	Author Bios
	Preface
	Contact Information
	Acknowledgements
	What is New With This Edition
	A Note to Students
	A Note to Instructors
	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.1 – MATLAB Introduction
	Learning Objectives
	What is MATLAB?
	What is MATLAB used for in engineering and science?
	How can I get MATLAB onto my computer?
	Are there any free alternatives to MATLAB?
	Where can I find more information and help with MATLAB online?
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.2 – Hello World
	Learning Objectives
	Where can I find and open the MATLAB program?
	Step 1: Create a New m-file
	Step 2: Write the `Hello World' Code
	Step 3: Run the Program
	Step 4: Make Your Program a Little Fancier
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.3 – MATLAB Environment
	Learning Objectives
	MATLAB Environment Windows and Parts
	Navigation Ribbon
	Working Folder Location
	Current Folder
	Command Window
	Editor Window
	Workspace
	Status Bar
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.4 – Changing MATLAB Preferences
	Learning Objectives
	How can I change the window layout in MATLAB?
	Changing Basic User Preferences
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.5 – The m-file
	Learning Objectives
	What is an m-file?
	How do I save my m-file?
	How do I input variables and expressions into the m-file?
	How do I run the m-file?
	What are the clc and clear commands?
	How can I place comments in my m-file?
	Can I separate my code into parts within the m-file?
	What does the color highlighting in the m-file mean?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.6 – The Command Window
	Learning Objectives
	What is the Command Window and how can I use it?
	How can I suppress outputs in the Command Window?
	Can I view help from the Command Window?
	Can the Command Window do it all?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 1: INITIAL SETUP AND BASIC OPERATION
	Lesson 1.7 – Publishing an m-file
	Learning Objectives
	What does publishing do?
	How can I publish in MATLAB?
	How can I get a PDF file of my published code?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.1 – Variables and Naming Rules
	Learning Objectives
	What is a mathematical variable?
	What is a programming variable?
	How can I give my results a variable name of their own?
	What are some possible problems with naming an expression?
	Are there benefits to good practices for variable naming?
	Are there some guidelines for variable naming that I can follow?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.2 – Characters and Strings
	Learning Objectives
	What is a character?
	What is a string?
	What makes characters/strings special?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.3 – Working with Strings
	Learning Objectives
	How do I join two strings together?
	How do I search and count strings?
	How do I make a whole string lower or upper case?
	Can I split a string into its component pieces?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.4 – Inputs and Outputs
	Learning Objectives
	How can I get input from the user?
	How do I display notes in the Command Window?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.5 – Data Types
	Learning Objectives
	What is a data type?
	What are the MATLAB data types?
	Why are data types important?
	How do I check the data type of a variable?
	Can I convert between data types?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.6 – Vectors and Matrices
	Learning Objectives
	Why is the program called MATLAB?
	What is a matrix?
	Do I need to know any special types of matrices?
	What is a vector?
	How do I define a vector or a matrix in MATLAB?
	What are some basic functions and commands for matrix manipulation?
	How can I reference strings as vectors?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 2: BASIC PROGRAMMING FUNDAMENTALS
	Lesson 2.7 – How to Debug Code
	Learning Objectives
	What is an error?
	What is a warning?
	How can I solve the problem with my code?
	Can I pause my program part of the way through?
	What if I cannot find the exact place of the error?
	Multiple Choice Quiz
	Problem Set

	Module 3: PLOTTING
	Lesson 3.1 – Plots and Figures
	Learning Objectives
	How can I visualize (plot) data in MATLAB?
	How do I plot data pairs (points) in MATLAB?
	How do I plot a function in MATLAB?
	What is the difference between a figure and a plot?
	How can I enter nonlinear functions for plotting?
	What are some possible errors with plotting?
	How do I show multiple data sets on the same plot?
	What are some other types of plots that MATLAB can generate?
	How do I plot on more than one figure in the same m-file?
	What is the close command?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 3: PLOTTING
	Lesson 3.2 – Plot Formatting
	Learning Objectives
	How can my MATLAB graph look nicer?
	What are some terms I should know for plots?
	How can I change the color and style of lines and markers on a plot?
	How can I make the function and points on the graph look nicer?
	How can I put a title and axis labels on my plot?
	How can I add a legend to my plot?
	How can I add a grid to my graph?
	How can I add special characters in my axis labels and title?
	How can I change axis limits and tick labels?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 3: PLOTTING
	Lesson 3.3 – Advanced Plotting
	Learning Objectives
	Does MATLAB have more plotting capabilities?
	How can I create a bar graph?
	How can I create a 3D line plot?
	How can I create a 3D surface plot?
	How can I create a polar plot?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.1: Basic Algebra, Logarithms, and Trigonometry
	Learning Objectives
	What kind of mathematical functions and operations are available in MATLAB?
	How do I use logarithmic functions in MATLAB?
	What about a logarithm that is not natural?
	How can MATLAB evaluate trigonometric functions?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.2: Symbolic Variables
	Learning Objectives
	What is a symbolic variable?
	What is a MATLAB toolbox?
	How do I use symbolic variables?
	How do I clear specific variables?
	How can I convert from syms data type to other data types?
	Can I replace a symbolic variable with a value?
	How can I change the output format of syms?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.3: Solution of Linear and Nonlinear Equations
	Learning Objectives
	How do I solve for roots of a linear equation?
	What is a nonlinear equation?
	How can I use MATLAB to solve nonlinear equations?
	Is there a faster way to work with polynomial equations in MATLAB?
	Can I plot with symbolic variables?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.4: Differential Calculus
	Learning Objectives
	What is a derivative?
	How do I take the derivative of a function in MATLAB?
	Where are derivatives used in engineering?
	How do I find the derivative of a discrete function in MATLAB?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.5: Integral Calculus
	Learning Objectives
	What is integration?
	How does MATLAB conduct symbolic integration?
	Can MATLAB do numerical integration of discrete functions?
	Example 2
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.6 – Linear Algebra
	Learning Objectives
	What is linear algebra?
	How do I add and subtract matrices?
	Can I use math functions like sin() on matrices?
	How do I perform matrix multiplication?
	What is the difference between matrix and array operations?
	How do I take the inverse of a matrix?
	Can MATLAB do advanced matrix and vector operations?
	How can I solve systems of equations with MATLAB?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.7 – Curve Fitting
	Learning Objectives
	What is curve fitting?
	What is interpolation?
	How can I interpolate data in MATLAB?
	What is spline interpolation?
	How do I conduct spline interpolation?
	What is regression?
	How do I do regression in MATLAB?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.8 – Curve Fitting: Plotting the Results
	Learning Objectives
	How can I plot the results of curve fitting?
	What are some common mistakes when plotting curve fitting results?
	Multiple Choice Quiz
	Problem Set

	Module 4: MATH AND DATA ANALYSIS
	Lesson 4.9 – Ordinary Differential Equations
	Learning Objectives
	What is a differential equation?
	How do I set up and solve a differential equation?
	How do I solve a higher order ODE?
	What are the limitations of using the dsolve() function?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 5: CONDITIONAL STATEMENTS
	Lesson 5.1 – Conditions and Boolean Logic
	Learning Objectives
	What are conditions?
	What is Boolean logic?
	Can different data types be identified in MATLAB?
	How can I round numbers in MATLAB?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 5: CONDITIONAL STATEMENTS
	Lesson 5.2 – Conditional Statements: if and if-else
	Learning Objectives
	What is a conditional statement?
	What is the if statement?
	What is the if-else statement?
	Can I use multiple conditions in a single expression?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 5: CONDITIONAL STATEMENTS
	Lesson 5.3 – Conditional Statements: if-elseif
	Learning Objectives
	What is the if-elseif statement?
	Independent vs. Dependent Cases
	What is the if-elseif-else statement?
	What is the difference between the else and elseif conditional clauses?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 6: PROGRAM DESIGN AND COMMUNICATION
	Lesson 6.1 – Flowcharts
	Learning Objectives
	What is a flowchart?
	Multiple Choice Quiz
	Problem Set

	Module 6: PROGRAM DESIGN AND COMMUNICATION
	Lesson 6.2 – Pseudocode
	Learning Objectives
	What is a pseudocode?
	How are pseudocodes used?
	How can I convert a pseudocode for a problem into a program?
	Multiple Choice Quiz
	Problem Set

	Module 6: PROGRAM DESIGN AND COMMUNICATION
	Lesson 6.3 – Writing Better Code
	Learning Objectives
	How can I improve my code for computational efficiency?
	How does hardcoding impact a program?
	What are some tips for good comments and spacing?
	Why does proper code indenting matter?
	What are some tips for choosing inputs and outputs?
	What are some tips for thinking ahead in when designing my program?
	Multiple Choice Quiz
	Problem Set

	Module 7: FUNCTIONS
	Lesson 7.1 – User-Defined Functions
	Learning Objectives
	What is a function?
	What are the naming rules for functions in MATLAB?
	How can I create functions in MATLAB?
	Can I define functions in the program m-file?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 7: FUNCTIONS
	Lesson 7.2 – Function Design and Communication
	Learning Objectives
	How can I add a description for my function?
	How can I define errors and warnings inside my function?
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.1 – while Loops
	Learning Objectives
	What is a loop?
	What is a while loop?
	Lesson Summary
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.2 – for Loops
	Learning Objectives
	What is a for loop?
	How can I reference vectors inside of a loop?
	Do I have to use the loop counter variable in the body of the loop?
	When do I use a for loop vs. a while loop?
	Lesson Summary
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.3 – break and continue Commands
	What are the break and continue commands?
	How does the break command work in MATLAB?
	How does the continue command work in MATLAB?
	Lesson Summary
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.4 – Nested Loops
	Lesson Objectives
	What is a nested loop?
	How do nested loops work?
	How do loop mechanics apply to nested loops?
	What is a ``flag''?
	When should I use programming flags?
	How can I use break and continue in nested loops?
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.5 – Working with Matrices and Loops
	Learning Objectives
	How can I reference matrices in a loop?
	How do I store values in a matrix using a loop?
	How can I access specific areas of a matrix?
	What is vectorization?
	How can I vectorize matrix operations in MATLAB
	What are some tips I can use for vectorization?
	Multiple Choice Quiz
	Problem Set

	Module 8: Loops
	Lesson 8.6 – Applied Loops
	Learning Objectives
	Why is this lesson important?
	How can I sort an array?
	How can I find the sum of a vector?
	How can I plot different variations of a function using loops?
	Multiple Choice Quiz
	Problem Set

	Module 9: READING FROM AND WRITING TO FILES
	Lesson 9.1 – Reading from Files
	Learning Objectives
	Why read data from a file?
	How do I read numeric-only data from files?
	What is a delimiter?
	How can I read numeric and character data from files?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 9: READING FROM AND WRITING TO FILES
	Lesson 9.2 – Writing to Files
	Lesson Objectives
	How can I write numeric data to files with MATLAB?
	How can I write non-numeric data to files with MATLAB?
	Lesson Summary of New Syntax and Programming Tools
	Multiple Choice Quiz
	Problem Set

	Module 9: READING FROM AND WRITING TO FILES
	Lesson 9.3 – Navigating Directories in MATLAB
	Lesson Objectives
	How do I set the current working directory for MATLAB?
	How can I loop through the contents of a directory?
	How can I create a new folder (directory) with MATLAB?
	Multiple Choice Quiz
	Problem Set

